

Third Edition

STRUCTURAL GEOLOGY

Marland P. Billings

Professor of Geology Harvard University

Prentice-Hall, Inc., Englewood Cliffs, New Jersey

© 1972, 1954, 1942 by Prentice-Hall, Inc. Englewood Cliffs, New Jersey

All rights reserved. No part of this book may be reproduced in any form or by any means without permission in writing from the publisher.

10 9 8 7 6 5 4

ISBN: 0-13-853846-8

Library of Congress Catalog Card Number 73-167628
Printed in the United States of America

PRENTICE-HALL INTERNATIONAL, INC., London PRENTICE-HALL OF AUSTRALIA, PTY. LTD., Sydney PRENTICE-HALL OF CANADA, LTD., Toronto PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi PRENTICE-HALL OF JAPAN, INC., Tokyo

PREFACE

Much new information on structural geology has been published since the last edition of this book. Obviously the more significant new data should be introduced into an elementary text. But in order to keep the length within reasonable bounds it would be necessary to eliminate some of the older material. This is not easy to do. Some might be eliminated completely and some might be shortened, but presumably the original text was as concise as possible.

As in the past, the principal purpose has been to present the basic principles of structural geology. There has never been a pretense to cover global tectonics, such as the evolution of mountain ranges, continents, and ocean basins. In the second edition I said: "Oceanography... is discovering many exciting facts about the topography and composition of the floors of the oceans, facts that are already revolutionizing our thinking about the crust of the earth." But little did I anticipate the full magnitude and impact of these discoveries. However, a synthesis of the tectonics of the ocean basins is beyond the scope/of this book.

The laboratory exercises and problems at the end of the book are much as they were in the last edition, except that the section on the use of the equal-area net has been expanded from one to three exercises. Serious consideration was given to reducing the coverage and length of the first eleven exercises. In fact, a completely new and shorter draft was prepared. But I became convinced that little of the material could be omitted and that the text was as concise as possible. Also, consideration was given to the preparation of several new exercises, involving the focal mechanisms of earthquakes, radiogenic data, Mohr's circles, and geophysical methods. Problems in the first two of these subjects would necessitate the presentation of much more background material than was possible. Inclusion of exercises on the use of Mohr's circles and geophysical methods would have lengthened the book still more.

A complete discussion of geophysical techniques is obviously beyond the scope of this book. But a discussion of the use of geophysical methods in structural geology is essential. The techniques of both geophysics and structural geology have become more sophisticated in the last two decades. Very few structural geologists are trained to do geophysical field work. Conversely, few geophysicists are able to conduct structural investigations of the type discussed in this book. To understand this relation of geophysics to structural geology, an analogy might be drawn with paleontology. Most structural geologists are not competent to do their own paleontology. But they should understand the basic principles and be prepared to challenge what appear to be incorrect conclusions by the paleontologist.

Although many references are listed at the ends of the chapters, they are of necessity incomplete. In a minor way these references should help emphasize the large number of publications available. In addition, an occasional ambitious student will be encouraged to undertake further reading. The critical reader will also notice that for some of the chapters the references are rather ancient. But very little new can be written on the geometry of faults, methods of measuring the thickness of sediments, and the character of unconformities.

Perhaps the author should have used only the metric system of measurement. But in many English-speaking countries, a dual system will be used for decades.

I want to thank the numerous geologists who have helped develop this book. Foremost among them are my former teaching assistants, who helped especially in the evolution of the laboratory problems: Randolph W. Chapman, Jarvis B. Hadley, Robert P. Sharp, Walter S. White, George E. Moore, Clyde Wahrhaftig, Laurence Nobles, Dallas Peck, and Bruce Reed. Exercises 12 through 14 in the present text are based on material prepared by Dr. James Stout. Mr. Claude Dean prepared the equations used in a discussion of the size of thrust blocks.

I am greatly indebted to Prof. John Haller and the United States Geological Survey for most of the photographs. Prof. Haller supplied many photographs from his own collection, as well as from those in his custody from the Lauge Koch expeditions to East Greenland. The staff of the Photographic Library of the U. S. Geological Survey in Denver, Irvil Shultz, Librarian, was exceedingly courteous and helpful. Other photos were supplied by Kurt Lowe, Bruce Reed, and Charles Doll.

As always, conscientious and efficient secretaries are essential to the preparation of any book. I am especially indebted to Mrs. Mary Maher in the preparation of the manuscript and to Mrs. Susan Williams in the later stages of getting permission to use figures from copyrighted articles and checking the galley proofs.

MARLAND P. BILLINGS

CONTENTS

1. Structural Geology, 1

Relation of Structural Geology to Geology, 1 Objectives of Structural Geology, 2 Scope of this Book, 6 References, 7

2. Mechanical Principles, 9

Materials of Structural Geology, 9
Force, 11
Stress, 16
Strain, 18
Stress-Strain Diagrams, 21
Factors Controlling Behavior of Materials, 23
References, 34

3. Description of Folds, 35

Introduction, 35 Attitude of Beds, 36 Parts of a Fold, 37 Nomenclature of Folds, 44 Plunge of Folds, 58 Refolding, 65 Fold Systems, 66 References, 69

4. Field Study of Folds, 71

Recognition of Folds, 71 Determination of Top of Beds of Primary Features, 81 Drag Folds, 90 References, 93

5. Office Techniques Used in Studying Folds, 95

Introduction, 95
Equal-Area and Stereographic Projections, 96
Pi Diagrams, 100
Contour Diagrams, 104
Beta Diagrams, 107
Use of Computers in Geology, 109
Preparation of Pi Diagrams and Beta Diagrams by Computer, 110
Structure Contour Maps, 112
Calculating the Depth of Folding, 114
References, 117

6. Mechanics and Causes of Folding, 118

Introduction, 118
Types of Folding, 118
Dynamics of Folding, 124
Ultimate Causes of Folding, 127
References, 138

7. Joints, 140

Observational Data, 140 Principles of Failure by Rupture, 151 Genetic Classification of Joints, 168 References, 172

8. Description and Classification of Faults, 174

General Characteristics, 174 Nature of Movement Along Faults, 177 Classifications, 191 References, 198

9. Criteria For Faulting, 199

Introduction, 199 Discontinuity of Structures, 200 Repetition and Omission of Strata, 200 Features Characteristic of Fault Planes, 201 Silicification and Mineralization, 203 Differences in Sedimentary Facies, 203 Physiographic Criteria, 204 Distinction Between Fault Scarps, Fault-line Scarps, and Composite Fault Scarps, 208 Map Symbols, 210 References, 212

10. Reverse Faults, Thrust Faults, and Overthrusts, 214

Introduction, 214 Thrusts and Reverse Faults, 214 Overthrusts, 217 Detachment Faults, 226 Megabreccias, 227 Mechanics of Reverse Faulting, Thrust Faulting, and Overthrusts, 229 Palinspastic Maps, 242 References, 242

11. Normal Faults, 244

Introduction, 244
Size, Attitude, and Pattern, 245
Tilted Fault Blocks, 245
Horsts and Graben, 249
Modern Faults, 252
Renewed Faulting, 256
Mechanics of Normal Faulting, 257
References, 260

12. Strike-Slip Faults, 261

Introduction, 261
Examples of Strike-Slip Faults, 262
Rate of Displacement, 269
Fracture Zones of the Ocean Basins, 272
Mechanics of Strike-Slip Faults, 273
Shears of the Second Order, 274
References, 275

13. Dating of Structural Events, 277

Introduction, 277
Paleontology, 278
Unconformities, 278
Distinguishing Faults From Unconformities, 287
Radiogenic Dating, 289
Tectonism and Sedimentation, 290
References, 292

14. Diapirs and Related Structural Features, 293

Introduction, 293 Evaporite Diapirs, 294 Serpentinite Diapirs, 302 Sedimentary Vents, 302 Mudlumps, 304 References, 305

15. Extrusive Igneous Rocks, 306

Introduction, 306 Lava Flows, 307 Pyroclastic Rocks, 308 Fissure Eruptions, 310 Volcanoes, 310 Craters, Calderas, and Related Forms, 312 Inflation and Deflation of Volcanoes, 321 References, 323

16. Intrusive Igneous Rocks, 326

Introduction, 326
Texture and Internal Structure, 327
Age Relative to the Adjacent Rocks, 330
Basis of Classification of Plutons, 331
Concordant Plutons, 335
Discordant Plutons, 350
Batholiths and Stocks, 361
References, 363

17. Emplacement of Large Plutons, 365

Introduction, 365
Time of Emplacement, 366
Depth of Emplacement, 368
Methods of Emplacement, 369
Forceful Injection, 372
Granite Tectonics, 372
Structures of the Flow Stage, 373
Structures of the Solid Stage, 377
Distinction between Primary and Secondary Structures, 378
Magmatic Stopping, 381
Metasomatic Replacement, 382
Relative Importance of Various Mechanisms, 383
Source of Magma, 383
References, 385

18. Cleavage and Schistosity, 386

Introduction, 386
Descriptive Terminology, 389
Origin, 393
Relation of Cleavage and Schistosity to Major Structure, 400
References, 407

19. Secondary Lineation, 408

Introduction, 408
Kinds of Secondary Lineation, 409
Attitude and Symbols, 413
Origin, 413
Successive Lineations, 417
Relation of Minor Structures to Overthrusts, 418
Lineaments, 419
References, 419

20. Plastic Deformation, 420

Introduction, 420 Evidence of Strain, 420 Mechanics of Plastic Deformation, 423 Dynamic Analysis of Petrofabric Diagrams, 428 Rotated Minerals, 432 Tectonites, 435 References, 436

21. Impact Structures, 437

Introduction, 437 Physical Features, 437 Shatter Cones, 440 Mineralogy, 441 Mechanics of Impacts, 441 Lunar Geology, 441 References, 443

22. Geophysical Methods in Structural Geology: Gravitational and Magnetic, 446

Introduction, 446 Geophysical Methods, 447 Gravitational Methods, 448 Magnetic Methods, 458 References, 473

23. Geophysical Methods in Structural Geology: Seismic and Thermal. 475

Seismic Methods, 475 Electrical Methods, 490 Radioactive and Thermal Methods, 490 References, 492

Laboratory Exercises, 493

- 1. Outcrop Pattern of Horizontal and Vertical Strata, 494
- 2. Patterns of Dipping Strata; Three-Point Problems, 499
- 3. Thickness and Depth of Strata, 507
- 4. Apparent Dips and Structure Sections of Folded Strata, 521
- 5. Geometrical Construction of Folds, 527
- 6. Structure Contours and Isopachs, 534
- 7. Trigonometric Solution of Fault Problems, 540
- 8. Projections, 546
- 9. Measurements by Descriptive Geometry, 551
- 10. Solution of Three-Point Problems and Vertical Fault Problems by Descriptive Geometry, 559
- 11. Solution of Inclined Fault Problems by Descriptive Geometry, 564
- 12. Equal-Area Net, Part I, 570
- 13. Equal-Area Net, Part II, 576
- 14. Use of Equal-Area Net Involving Rotation, 581

Equal-Area Net, 589

Index, 591

Three-Point Problems

The method of working a three-point problem is the opposite of constructing an outcrop pattern. It is possible to calculate the dip and strike of an horizon if the location and altitude of three points on that horizon are known and if the horizon is truly a plane and not a warped surface.

A simple illustration of a three-point problem will be given first. Figure E2-3A is a map giving the location and altitude of three points on an horizon; these points are A, B, and C. Inasmuch as the strike of any plane is a line connecting points of equal altitude on that plane, line AB is the strike of the horizon under consideration because A and B are at the same altitude. The dip is measured at right angles to the strike, and in this case it is toward the southeast. A perpendicular is dropped from C to AB, the intersection being labeled D. To find the value of the dip a vertical triangle is rotated to the surface around DC as an axis. CF is erected perpendicular to DC. The difference in altitude between points C and D, 600 feet, is set off, on the same scale as the map, along the line CF. The angle CDE is the dip of the horizon.

A more general problem is illustrated by Fig. E2-3B. The location and altitude of three points on the horizon are shown. Some point, to be determined, between points B and C, will have the same altitude as A (1050 feet); a line connecting that point with A will be the strike of the horizon. The unknown point can be located by proportion:

Altitude of A minus altitude of B Distance BD Distance BC Distance BC

where D is the point we wish to find. Solving the equation, we obtain BC = 1100 feet. This distance is set off from point B using the same scale as the

Fig. E2-3. Three-point method. Location and altitude of a plane are given at A, B, and C. Dip and strike of the plane can be determined.

map. AD is the strike of the horizon. The dip may be found in the same way as in Fig. E2-3A.

Problems

- 1. Figure E2-4 is a topographic map in which two geologic horizons are shown, one by a broken line and the other by a dotted line. What is the altitude of the horizons at a, b, c, and d?
- 2. In another area a north-south drainage tunnel 10 feet in diameter is to be driven in bedrock at an altitude of 500 feet above sea level. The tunnel will go directly under a point to be designated A. Three vertical drill

Fig. E2-4. Map for use in Problem 1 in Exercise 2. Topographic contour interval is 100 feet.

Fig. E2-5. Topographic map to be used in Problem 4.

holes were driven to locate a probable fault. The location of the drill holes and altitude of the fault is as follows.

		Altitude of Fault
Drill Hole	Location	above Sea Level
В	1000 feet east of A	900 feet
C	1000 feet north of A	100 feet
D	1200 feet N.60°W. of A	700 feet

- a. What is the attitude of the fault?
- b. Where will the tunnel cross the fault?
- 3. It is proposed to construct an east-west water supply tunnel in bedrock at an altitude of 1800 feet above sea level. The surface is level and at an altitude of 2000 feet. The proposed tunnel is to be 1000 feet north of a point that may be designated A, which is located on a very weak shale. But a few hundred feet south of it there is a well-consolidated conglomerate. Three drill holes were made; the data are as follows. In each case conglomerate is found beneath the shale.

	Altitude of Contact
	of Shale and Conglomerate
Location	Relative to Sea Level
A Reference point	1800 feet
B 700 feet N.50°W. of A	1400 feet
C 2000 feet N.10°E. of A	0 feet

- a. What is the attitude of the contact of the conglomerate and shale?
- b. In what rock would the proposed tunnel be located?
- c. Where would you suggest locating the tunnel?
- **4.** On Fig. E2-5 a thin bed of limestone, striking N.90°E. and dipping 20° north, crops out at the X. Show the trace of the limestone on the map on an overlay of tracing paper; altitude of X is 2050 feet.
- **5.** Figure E2-6 is an area of limited outcrop. The actual outcrops are surrounded by dotted lines. Four formations are exposed: conglomerate, marble, quartzite, and amphibolite.
- a. The base of the conglomerate is well exposed at A, B, and C. Assuming that the base of the conglomerate can be treated as a plane, calculate the attitude of this contact.
- b. The trace of the contact of the marble and quartzite is shown in two of the southerly outcrops. Assuming a planar contact, calculate the attitude of this contact.