Passive and Active
Microwave Circuits

J. HELSZAJN

Department of Electrical and Electronic Engineering
Heriot-Watt University

Edinburgh, United Kingdom

A WILEY-INTERSCIENCE PUBLICATION

JOHN WILEY & SONS
New York ¢ Chichester ¢ Brisbane ¢ Toronto



Copyright © 1978 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Sections 107 or 108 of the
1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:
Helszajn, Joseph.

Passive and active microwave circuits.

“A Wiley-Interscience publication.”

Includes index.

1. Microwave circuits. 2. Microwave devices.
1. Title.

TK7876.H43 621.381'32 78-5787
ISBN 0-471-04292-7

Printed in the United States of America
10987654321



Preface

This book was written primarily as an introductory text in microwave
engineering for final undergraduate or first-year graduate students in
electrical engineering. It is also likely to be of value to engineers in
industry. Since it is component rather than system oriented, it incorporates
examples of the most important devices used in microwave engineering.
An effort has been made throughout to maintain the length and standard
of each chapter as uniform as possible. Except for the chapter on scatter-
ing matrices, which is required reading, each chapter is fairly self-con-
tained. No background other than an introduction to transmission line
theory and waveguide fields is necessary for understanding the text.
Although the material included in the text is too large to be covered in one
semester, it will allow each professor to construct a mix of topics without
too much restriction and will also allow some latitude for varying curricu-
lum from year to year. It is hoped that the student will find the text
sufficiently interesting to follow up the material not covered in the
classroom.

The three classes of devices treated in this text are passive components,
nonreciprocal ferrite devices, and semiconductor circuits. The classic elec-
tronic tubes such as the klystron, magnetron, and traveling wave tube have
been omitted since their descriptions are readily available in many stan-
dard textbooks. The book starts with scattering and immittance matrices,
the former being essential reading. It continues with passive networks such
as directional couplers, impedance and mode transducers, phase and
attenuation networks, resonators, and filters in Chapters 3-7, respectively.
The classic nonreciprocal ferrite devices, gyrator circuits, and circulators
are described next in Chapters 8—10. The semiconductor class of devices is
studied in Chapters 1115, which deal with variable-resistance and -capaci-
tance devices, negative-resistance bulk devices, nonlinear resistive mixer
circuits, and field-effect transistor circuits.

At microwave frequencies the measured quantities of both passive and
active circuits are most often the scattering parameters of the device. These
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vi Preface

parameters describe transmission and reflection at the different ports of
the device. The scattering coefficients are therefore used as far as possible
to characterize the behavior of the devices dealt with in the text. For the
symmetric passive devices, the entries of the scattering matrix are formed
by constructing the eigenvalue problem used in the classic book by
Montgomery, Dicke, and Purcell Principles of Microwave Circuits
(McGraw-Hill, New York, 1948). This approach is also utilized to for-
mulate the nonreciprocal ferrite devices such as the circulator and gyrator
circuits. Although the eigenvalue problem is not extended to the class of
semiconductor devices, the scattering variables are still the measured
quantities there, no more so than in the case of the microwave transistor
amplifier.

Since this is essentially a teaching rather than a research text, no effort
has been made to acknowledge individual contributions specifically, but it
goes without saying that this work is but a reflection of many individual
efforts over the past 50 years.

Wholehearted thanks are due to Sheila Murray, Moira Tullis, and Helen
Vaughan of the Department of Electrical Engineering, Heriot-Watt Uni-
versity, for their good will and cheer, without which this task would not
have taken root.

J. HELSZAIN

Edinburgh, United Kingdom
April 1978
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CHAPTER ONE

The Scattering Matrix

The scattering matrix dealt with in this chapter is admirably suited for the
description of a large class of passive microwave components and is used
as much as possible throughout this text. In many cases it leads to a
complete understanding of the microwave device while avoiding the need
to construct a formal electromagnetic boundary-value problem for the
structure.

The entries of the scattering matrix of an m-port junction are a set of
quantities that relate incident and reflected waves at the ports of the
junction. It describes the performance of a network under any specified
terminating conditions. The coefficients along the main diagonal of the
scattering matrix are reflection coefficients, whereas those along the off-
diagonal are transmission coefficients. A scattering matrix exists for every
linear, passive, and time-invariant network. It is possible to deduce im-
portant general properties of junctions containing a number of ports by
invoking such properties of the junction, as symmetry reciprocity, and
power conservation. -

Since the entries of the S, Z, or Y matrices of a symmetrical network are
linear combinations of the circuit eigenvalues, their direct evaluation or
measurement provides an alternative formulation of network parameters.
The m eigenvalues of a symmetrical m-port junction are 1-port reflection
coefficients or immittances at any port of the junction corresponding to
the m eigenvectors of the device. These eigenvectors are the m possible
ways that it is possible to excite the junction and are determined by its
symmetry only. The I-port circuits formed in this way are known as the
eigennetworks of the network. In the case of symmetrical 2-port networks
the eigenvalues may be obtained from measurement or by calculation by
applying in-phase or out-of-phase eigenvectors at the ports of the network.
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2 The Scattering Matrix

The scattering parameters of symmetrical 2-port networks can be readily
obtained from their equivalent circuits by forming their eigennetworks.
These eigennetworks are obtained by bisecting the 2-port network and
opencircuiting and shortcircuiting the exposed terminals. The reflection
coefficients of these two 1-port eigennetworks are just the two eigenvalues
of the scattering matrix. Since the scattering coefficients are the sum and
difference of the two eigenvalues, this approach immediately yields the
entries of the scattering matrix. A simple microwave test set that allows
these two eigenvalues to be measured is also described in this chapter.

1.1 THE SCATTERING MATRIX
The scattering matrix of a general m-port junction is defined by
b=Sa (1.1)

where S is a square matrix that for a 2-port network has the form

-~ 18 S
S= 11 12 1'2
[Szl Sn] (12)

The elements along the main diagonal are reflection coefficients,
whereas those along the off-diagonal are transmission ones.
The vectors @ and b are column matrices given by

— a;
a= [ a, ] (1.3)
— [b
b=| 14
[b,] (14
Thus the relation between the incoming and outgoing waves for a 2-port
I L
-0 10 ——————— 02 O—
—— -
a4 + + a3
Zo 2-p
—Port
K network V2 Zo §
E b, - - b
~——— — -
1 —————02 o—

Figure 1.1. Schematic diagram indicating definition of incoming and outgoing waves for a
2-port network.



1.1 The Scattering Matrix 3

network becomes
by=a,8,,+a,8, (1.5)
b,=a,8,,+a,S,, (1.6)

This relation is given schematically in Figure 1.1.
The scattering parameters of the 2-port can be expressed in terms of the
incident and reflected waves as

S”=a_, o (L.7)

Su=22 (1)

s,=2 (1.9)
e a,=0

S22=j—j (1.10)
a=0

Figure 1.2a and b illustrates one way that the scattering parameters may
be obtained experimentally.
It is assumed that g; and b; are normalized so that 5a,a* is the available

(et §
power at port i and }b,b* is the emergent power at the same port. For a
2-port network the a’s and b’s are defined by

g,=% \/:_0 +VR, I, (1.11)
bi=3 \/2_0 ~VR, I, (1.12)
a2=% \/2_0 +VR, I, (1.13)
b2=% \/I;:_O ~VR, I, (1.14)
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ay by by a,
J L Device J t
under —O—
test
Dual ] Dugl 50 Q
50 © directional directional load
coupler coupler

r.f. -
source

Figure 1.2a. Microwave test set for evaluating S\, and S,,.

To show that 1a;a* is the available power at port 1, it is only necessary to
form the voltage V| in terms of the generator voltage E, and internal
impedance R,

Vi=E,— Ry, (1.15)

Substituting this value of ¥, into the definition of a, gives

a,=% il (1.16)
V RO
the result is
2
1a a"‘=i (1.17)
2%1%1 8R0 .

This is just the available power of a generator of e.m.f.E, and internal
impedance R,

a b, bya,
| l Device IL
under
test
Dual Dual
50 2  directional directional 50 Q
load coupler coupler

r.f.
= source

Figure 1.2b. Microwave test set for evaluating S,, and S,,.



1.2 The Scattering Matrix Eigenvalues 5

To show that % B.b* is the emergent power at port 2, it is necessary to
combine (1.13) and (1.14) with a,=0. This gives
V2

b,= (1.18)
\ RO
Thus the power in the load is
vi

2R,

The significance of the transmission parameters may now be inferred by
forming S,, as defined by Eq. 1.8

=22 (1.20)

so that §,, is the voltage transfer ratio of the network.
The meaning of the reflection parameters may also be obtained by using
the definition for S,, given by Eq. 1.7

b (Vl/ VRO)_Il VR,
n=—| = (1.21)
@ =0 (Vl/ VR0)+11 V R,
Thus
R,— R,

This is just the familiar reflection coefficient of a 1-port network. Dual
relations to those above apply to S, and S,,.

1.2 THE SCATTERING MATRIX EIGENVALUES

The relation between the scattering matrix and its eigenvalues can be
obtained from the eigenvalue equation of the square matrix S shown
schematically in Figure 1.3

SU,=s,U, (1.23)
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Un‘” Sp——- ~~——Sp U,,m

snUn=5Un (b= 5Sa)
Figure 1.3. Schematic diagram illustrating eigenvalue equation.

where U, is an eigenvector and s, is an eigenvalue. Through comparison

with Eq. 1.1 it can be seen that U, represents a possible excitation in the
junction with the fields at the terminal planes proportional to the elements
of the eigenvector, and s, represents a reflection coefficient measured at
any terminal plane. Equation 1.23 has a nonvanishing value for U,
provided

det|S—s,7]|=0 (1.24)

where 7 is a unit vector.

Equation 1.24 is known as the characteristic equation. The determinant
given by the last equation is a polynomial of degree m. Its m roots are the
m eigenvalues, of S, some of which may be equal (degenerate). For a
lossless junction, they lie in the complex plane with unit amplitude. These
eigenvalues can be obtained once the entries of the scattering matrix are
stated.

The characteristic equation for a 2-port network is

Sn—s, Sy
S Siu—s,

n

=0 (1.25)

provided the junction is both reciprocal and symmetrical. Expanding this
determinant gives

(Sn"sn)z_szzl=0 (1.26)

The two roots of the characteristic equation are
5, =8S,+5, (1.27)
55=8,—8; (1.28)

Thus the eigenvalues are linear combinations of the entries of the scatter-
ing matrix.
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The scattering coefficients may also be written in terms of the eigenval-
ues as

s +s

S, = '2 2 (1.29)
Sp— S

Sy = '2 2 (1.30)

This suggests that if either set of variables is known the other may be
formed. The boundary conditions of junctions may therefore be estab-
lished in terms of either set of variables. If we assume that the junction is
matched, the relation between the two eigenvalues can be obtained from
Eq. 1.29 by

S, = "Sz (1.31)

which leads to
S,;,=0 (1.32)
|S2f=1 (1.33)

These two entries satisfy the unitary condition to be introduced later in
this chapter.

1.3 EIGENVECTORS

A junction eigenvector is a unique set of incident waves determined by the
symmetry of the network for which the reflection coefficient at any port is
the corresponding eigenvalue of the scattering matrix. Since the eigenvec-
tors are completely determined by the junction symmetry, a symmetrical
perturbation of the junction alters the phase angles of the eigenvalues but
leaves the eigenvectors unchanged. For the 2-port network illustrated in
Figures 1.4a and 1.4b the two eigenvectors may be obtained by forming
the eigenvalue equation given by Eq. 1.23 one at a time.
For the eigenvalue s/, the eigenvalue equation becomes

Su Sy || UY UV
=(5,;+S8 1.34
[S2| S“ U‘(Z) ( 11 2]) U((lz)) ( )
Expanding this equation gives
SnUP+ 8, UP =(S,,+ $,,) U (1.35)

S2,U,“)+S”Ul(z)=(S”+S2,)U1(2) (1.36)
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¢1=1 by

O—t—med ———o0 R
1
= +5812,— =5
by=sn +s12,5 =31
b
by =su + 812, 5, =51
e e i)
b az=1

Figure 1.4a. Schematic diagram for in-phase eigensolution for 2-port network.

These two equations are satisfied provided

U=y =-L (137)

V2

This eigenvector corresponds to equal amplitude in-phase waves at ports 1
and 2 of the network in the manner illustrated in Figure 1.4a.
For the eigenvector s,, the eigenvalue equation is

(1 (1)
{ A ] i EOIES ek (138)
Expanding this equation gives
S U+ 8, U2 =(Sy,— Sy ) US" (1.39)
SuUY+ S, UP = (8~ S,) U (1.40)
The two equations are consistent provided
1
Uid=-UP= el (1.41)

This solution is shown schematically in Figure 1.4b.
These two excitations either produce an opencircuit or a shortcircuit at
the plane of symmetry of the network. The equivalent circuits or eigen-

ay=1 by
O] —a—oO0
- b _
bi=s11 =812, 57 =52
by = b2 o
2= = S11 ¥ 812, 5y =52
[o T e e @)
b as= ~1

Figure 1.4b. Schematic diagram for out-of-phase eigensolution for 2-port network.
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|

| .
5, | Magnetic S, Efectric

| wall wall

|

]
Figure 1.5a. One-port eigennetwork Figure 1.5b. One-port eigennetwork
Jor in-phase eigensolution. Jor out-of-phase eigensolution.

networks are therefore the 1-port opencircuited or shortcircuited transmis-
sion lines depicted in Figures 1.5a and 1.55.

1.4 DIAGONALIZATION OF SCATTERING MATRIX

If the eigenvalues are known, it is possible to form the coefficients of
the matrix S. The relation between the two is obtained by diagonalizing S.
This can be done by a matrix U having for its columns the eigenvectors of
S

S=UAU"! (1.42)

where A is a diagonal matrix with the eigenvalues of S along its main
diagonal and U ! is the inverse of U. If the eigenvectors of S are those
obtained earlier

U-'=(0%)" (1.43)

where (U*) is the transpose of the complex conjugate of U. The relation
between the eigenvalues and the coefficients of the scattering matrix is
obtained by multiplying out Eq. 1.42.

The diagonalization procedure will now be developed for a 2-port
Junction. This gives the relation between the eigenvalues and the scattering
coefficients of the scattering matrix. The matrix U that has the eigenvec-
tors of § as its columns is

=1 [1 1
U 75 [ U ] (1.44)
The diagonal matrix A is

(1.45)

>\

]
—
o X
(]
[

52



10 The Scattering Matrix

Diagonalizing the matrix S gives

S Su =l[l l]sl Y [1 1]
S, S, 2l1 -1]lo s|l1 -1

Thus
s +s .
S”_ l2 2 (1'46)
5 —S
szl=—'5—2 (1.47)

which is the result obtained earlier.

1.5 SCATTERING PARAMETERS OF 2-PORT NETWORKS

The scattering parameters of symmetrical networks may be readily ob-
tained from their equivalent circuits by forming their eigennetworks. These
are obtained by bisecting the network and opencircuiting and shortcircuit-
ing the exposed terminals, which is described in Chapter 2. This approach
will be illustrated now in the case of a uniform section of transmission line
and also for shunt and series immittances loading a transmission line.

For a uniform transmission line of electrical length @ in Figure 1.6a, the
two eigennetworks are opencircuited and shortcircuited lines of electrical
lengths 8 /2. The two reflection eigenvalues are therefore

;Zo/c— ZO
Z,—Z
_ s/c 0
5= ——Z’/c Tz (1.49)

It is observed that s, is associated with the opencircuited eigennetwork,

Z,

- 8 -

Figure 1.6a. Section of uniform line.
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Omem | (o
|
| z
Z o
0 |
|
O~
> 6 . 9 .
- 2 2
Figure 1.6b. In-phase eigennetwork for Figure 1.6c. Out-of-phase eigennetwork
uniform section of line. for uniform section of line.

since its eigenvector corresponds to in-phase waves at the two ports of the
network, whereas s, corresponds to the shortcircuited eigennetwork, since
it is related to the eigenvector having out-of-phase waves at the ports. The
opencircuited and shortcircuited impedances for the eigennetworks in
Figures 1.65 and 1.6¢ are

Z,/=Zocoth § (1.50)
Z,,.=Zytanh & (1.51)
s/c 0 2 .

and Z, is the characteristic impedance of the line.
Substituting Eqs. 1.50 and 1.51 into Eqs. 1.48 and 1.49 gives

s;=exp(—80) (1.52)
s,=—exp(—4) (1.53)
Thus
s+,
Si=8p= 5 =0 (1.54)
51— 5,
Sn=S8n= ) =exp(—4) (1.55)

The scattering matrix for the shunt admittance loading a transmission line
of characteristic admittance Y, in Figure 1.7a proceeds once more by
constructing the two eigennetworks. The eigennetworks shown in Figures
176 and 1.7¢ are obtained by bisecting the network and opencircuiting
and shortcircuiting the exposed terminals. The reflection eigenvalues for
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O~ an®

Figure 1.7a. Section of uniform line loaded with shunt network.

these two networks are

YO— Yo/c
=——" .56
T Yt Y, (1.56)

YO‘- Ys‘/c
=—_' 1.57
2T Y+, (1.57)

where
Y

Yo/c= ? (158)
Y, ;=00 (1.59)

and Y, is the characteristic admittance of the transmission line. Combining
Eqgs. 1.56 to 1.59 yields

s S s+, —Y 1.60
H=—22- 2 - Y+ 2 Y() ( . )
$—$, 2Y,
21 12 2 Y+2 YO (l 61)
o O
Y, g Yo
o O-
Figure 1.7b. In-phase eigennetwork for Figure 1.7c.  Out-of-phase eigennetwork for

uniform line loaded with shunt network. uniform line loaded with shunt network.



