STRUCTURED COBOL

| RUTH ASHLEY -

S R TN

TR

STRUCTURED COBOL

RUTH ASHLEY

Co-President of DuoTech
San Diego, California

John Wiley & So&:s, Inc.
New York ¢ Chichester ® Brisbane ® Toronto

Publisher: Judy Wilson .

Editor: Irene Brownstone

Production Supervisor: Ken Burke
Artists: Carl Brown, Winn Kalmon
Makeup: Karla Savage

'
-

Copyright @ 1980, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond
that permitted by Sections 107 or 108 of the 1976 United States -
Copyright Act without the permission of the copyright owner

" is unlawful. Requests for permission or further information
should be addressed to the Permissions Department,

John Wiley & Sons, Inc.

“ Library of Congress Cataloging in Publication Data:

Ashley, Ruth.
Structured COBOL.

(Wiley Self-Teaching Guides)
" Includes index.-
1. COBOL (Computer program language) — Programmed
instruction. 2. Structured programming — Programmed
instruction. I. Title.
QAT6.73.C25A84 1980 . 001.64'24 79-27340
ISBN: 0-471-05362-7

Printed in the United States of America
80 81 10 98 765 43 21

‘How To Use This Book

This book has no special prerequisites. If you have taken a course or read a
book on data processing, you should have no problem working through this
Self-Teaching Guide. If this is your first venture into the world of computers,
you may benefit from an introductory overview of the data processing environ-
ment. Another Self-Teaching Guide, Introduction to Data Processing (2nd
edition) by Martin Harris, provides excellent background for this book.

This Self-Teaching Guide consists of thirteen chapters, each of which will
bring you deeper into Structured COBOL, building on the previous information.
Each chapter begins with a short introduction, followed by objectives that out-
line what you can expect to learn from your study of that chapter. Many chap-
ters end with a Summary Exercise, a program for you to write, which lets
you pull together and apply the new material you have learned. The Self-Test
at the end of each chapter lets you assess how well you have met the objectives.

The body of each chapter is divided into frames—short numbered sections
in which information is presented or reviewed, followed by questions that ask
you to apply the information. The correct answers to these questions follow
the dashed line in each frame. As you work through the Guide, use a card or
folded paper to cover the correct answer until you have written yours. Andbe
sure you actually write each response, especially when the activity is state-.
ment coding. Only by actually coding COBOL statements and checking them
carefully (letter by letter, space by space) can you get the most from this
Self-Teaching Guide.

As you code statements and programs throughout this book you may usé
the forms provided or you may wish to use actual COBOL coding forms, avail-
able in most college bookstores or supply stores,

. In the back of the book are three Appendixes. Appendix A lists COBOL
reserved words, Appendix B shows the standard collating sequence, and
Appendix C summarizes the formats of the Procedure Division statements
discussed in this book. An index is also provided, so you can use this book
for later reference.

- Contents |

How to Use This Book

Introduction
- Chapter 1
. 'Chaf)ter 2
Chapter 3
Chapter 4
Chapter 5
. Chapter 6
Chapter 7
. Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Appendix A
Appendix B
Appendix C
~ Index

The Structure of Prog'ramniing
The Structure of COBOL
Beginning COBOL

Using Unit Record Files
COBOL Arithmetic

.The First Three Divisions

COBOL Conditions

Sequential Files I

Sequential Files II

More COBOL Programming Techniques
Tables v

.Random Access Files

Running COBOL Programs
COBOL Reser{red Words
Collatiﬁg Sequence
Summary of Formats

19
3‘7
61
78

128
142
163

193

218
242
267
284
288
289
293

Introduction

COBOL is a computer programming language that was designed to solve the
data processing problems of business. A number of years ago, a national
committee, under the auspices of the U.S. government but with representa-
tives of most computer manufacturers, studied the many versions of COBOL.
(Almost every large installation had its own version at that time.) The stan-
dardized COBOL that was adopted by that committee became American Nation-
al Standard, or ANS COBOL. Many compilers today have variations, but they
are extensions or modifications to the basic ANS COBOL. Reference manuals
clearly indicate where the variations differ from the standard.

Structured COBOL deals with the COBOL language—the same COBOL
that programmers and computers have been using for years. "Structured”
here refers to_programming, and, as such, is-independent of the COBOL lan-
guage. Structure is an approach to programming in which we are concerned
with clarity as well as effectiveness. A structured approach o learning
COBOI. makes a complex subject easier to learn and will help you develop
good coding habits automatically. Most computer installations ask all their
COBOL programmers to use structure. Since Structured COQBOL programs
are clear and easy to read, they are much easier to modify than "traditional”
COBOL programs. This is an important distinction since as much as fifty
percent of programmers' time may be spent in modifying old programs.

Programs written in Structured COBOL make sense to all COBOL pro-
grammers and COBOL compilers. In fact, one of the major advantages of
structured programming ig that it is readable by human beings. A person who
isn't a programmer at all can read a Structured COBOL program and fjgure
out what is happening. > ‘ h

When you complete this Self-Teaching Guide, you will be able to write
COBOL programs that will require no alterations to run on most systems,
and only a few changes for others. The Environment Division in the COBOL
program, because it describes the machines and equipment used, contains
most of the material tha't‘ varies among systems. When you begin actually
_running programs, therefore, you -will have to find out what Environment
Division entries are standard for the system you will be using. The majority
of the COBOL program, however, is machine mdependent and-will run equal-
ly Well on almost any compliter system. .

The COBOL program you write is called a source program. Thxs source
program is then fed into a source computer, where it is compiled or translat-
ed into a machine-language program, the object program. One COBOL state-
ment may be translated mto as many as fifty consecutive ob)ect statements,

. o ' - . » T -

2 STRUCTURED COBOL

since extremely detailed instructions must be given to the computer in terms
it understands. At the compilation stage, many of the errors (or bugs) in a
program become apparent. Errors in gpelling of the special COBOL words,
omission of required spacing or punctuation, and use of incorrect formats
are just some of the factors that can hinder the compilation of your source
program into the machine-language object program. Learning to program in
machine language does not circumvent these problems; machine-language
format, syntax, and sequencing require even more attention to the details of
both the language and the system. When you program in a higher level lan-
guage, such as COBOL, the compiler provides error messages from the
source computer, which will help you correct your program. The object
computer is used then to execute your mechanically correct program.

In this guide, we shall stick as closely as possible to ANS COBOL, using
a structured approach. Structured COBOL is self-contained, including all the
materials necessary for you to study ANS COBOL; you do not need access to
a computer to learn how to write a program in COBOL. Of course, you will
need access to a computer to develop what you learn here into actual program-
ming. .

This book includes an introduction to the problems you'll encounter when
you first kegin to compile, test, and run your Structured COBOL programs.
Until you begin that process, you may not really appreciate the benefits of
Structured COBOL, even though you know the statements and can code the
control structures. Structured coding makes the testing and debugging part
of programming much more manageable.

Since we don't know what system is used in your installation, we can't
tell you exactly how to go about it. You will probably need guidance from an
irstructor, a fellow student, or a congenial programmer. And before you run
any programs, you may find it useful to review the COBOL reference manual
for your installation. Beyond the basics presented in this book, you will find
that COBOL has many more options, some more statement types, ‘and vari-
ous aids for testing your programs, which will be useful as you actually be-
gin to apply what you have learned in Structured COBOL.

CHAPTER ONE

- The Structure of Programming

The first chapter of Structured COBOL deals not with COBOL, but. with struc-
tured programming in general. Before we can begin to apply coding rules, we
need to get an overview of the structure of programming in a business environ-
ment. Virtually all programming problems can be seen as combinations of
three structures. We will see how these three simple structures can be com-
bined to solve most business programming problems. In this chapter we'ld
look at a few ways to describe the general structure of a problem.

All of this will help you to begin thinking about programming as a method
of creating procedures, called programs, to solve business problems.

When you have completed this chapter, you will be able to:

state two advantages of structured programming over traditional

' programming;

identify the type of programming problem represented by an example;

identify examples of sequence, selection, and repetition in a program
structure;

interpret a simple'hierarchy chart; and

interpret a simple pseudocode design.

. 1. The basics of programming can be diagrammed like this:

Input jopi Process g1 - Output

When you write a program, you specify an exact procedure the computer
will follow to solve a problem. In essence, you tell the computer what it
will get as input data, what to do with it, and what you want as output
data. Everything between the input data and the output data is processing.
In a business environment, a great deal of data is handled. Problems
such as inventory control, personnel file maintenance, and payroll pro-
cessing all involve input of data, procéssing, and output of the results.

4 STRUCTURED COBOL ¢

[

Consider a payroll problem—any payroll problem. -

(a) Give one example of input information that is needed.

(b) Give one item of processihg’_.:‘

" (c) Name one piece of possible output data.

- e e = o w = = = e o e w = e = =

(a) hours worked, rate per hour, person's name, etc.
(b) multiply hours times rate, figure tax, etc.
(c) a paycheck, records, etc. '

2. Consider a situation in which a department store has a large file (or col-
lection) of customer account records. Every day the accounting depart-
ment receives several hundred payments in the mail. Clerks keypunch
a set of data cards, each with customer number and amount paid. These
cards become the input data for a program that looks up each customer
from whom a payment was received, and subtracts the payment from the
current balance. Finally, it prints out names of any customers who paid
too much, and it also prepares a daily "income statement" of the total
amount received that day by mail.

(a) Name two items of input to this problem.

[4
(b) Name two elements of processing.

(c) Name two items of outpht.

(a) customer file, paynient cards; (b) look up accounts, subtract pay-
ments, add up all payments, check if balance is less than zero; (c) new
balances, total of payments, list of overpaid customers

3. Most business problems fall into four general categories. Update prob-
lems involve modifying master sets of data. Summary problems use
input data to find specific information or totals. Report problems use
input data to prodtice printed reports in a specific format. Editing prob-

. lems require a detailed "edit" or verification of input data, often as a
preparation for its use as input to still another program.

THE STRUCTURE OF PROGRAMMING 5

Indicate whether each problem below is a summary, update, report,
or editing problem.

(a) Go through a set of patient records and print each patient's name,

length of hospital stay, and total bill.

(b) Process a set of patient records to find out the average cost per day

per patient.

(c) Process a set of patient records to change attending physician

"Sweeney' to '"McDowell'".

(d) Process a set of payment records to make sure each is in correct for-

mat and includes an eight digit patient number.

(a) report; (b) summary; (c) update; (d) edit

4. Many business problems contain elements of all four general problem
types. In.the situation described in frame 2, which aspect of the problem,
if any, is of each type? '

(a) Summary

(b) Update

(c) Report

(d) Editing

(a) income statement (total amount in); (b) changing customers' balances;
(c) list of overpaid customers; (d) none indicated in the problem statement

5. Each problem, no matter what type, involves input, processing, and out-
put. Every program—which is the procedure for solving the problem—
must include at least one input function, one processing function, and one
output function. A given program may include many of each type of func-
tion, depending on the complexity of the problem. In addition, every pro-
gram has an overall control function which calls in any of the other func-
tions, as needed. Structured programming is based on these control
functions. They control the sequence in which all other functions are
executed. : -

(a) What type of program would require a control function?
(b) What type of function is involved in the tax computation in a payroll

problem solution?

6 STRUCTURED COBOL

(c) What type of function would call on a tax computation function ?

(a) all types; (b) processing; (c) control

In a program, flow of control dictates which instruction the computer
considers next. Most high-level languages, including COBOL, offer
various ways to specify flow of control. Traditional programming is
based on flow of control, and takes full advantage of all the ways of modi-
fying flow that are available. Some of these ways require very little in-
ternal storage and/or very little time. Some are "elegant" and allow the
programmer to code fewer lines. The result may be an efficient program,
but it often communicates very poorly with human readers. In structured
programming, we restrict ourselves to a very few ways to control se-
quence of execucion in programs. The enhanced clarity of coding that
results means programs can be written more quickly, debugged and

‘tested more quickly, and revised much more easily in the future.

(a) Which generally uses more ways to control sequence of execution—

traditional or structured COBOL?

(b) Which are generally easier for you to read—traditional or structured

COBOL programs?

(a) traditional; (b) structured

Data processing problems have been programmed using traditional tech-

niques for many years. You may be familiar with flowcharts, for example.

Let's look more closely at the special features of structured programming.
Structured programming looks at a problem as a hierarchy of func-

tions to be performed. Higher level functions are control functions; they

control the execution of lower level functions, which may be more control

functions, input functions, processing functions, or output functions.

Each function, sometimes called a module, is invoked only by hlgher

level control functions.

THE STRUCTURE OF PROGRAMMING 7

" (b) Prepare itemized list

Prepare

itemized

list
F‘:et Process Produce
input .
record input output

This example shows a high-level module with three lower level mod-
ules. What modules shown could be invoked by.each of these ?

(a) Get input record

(a) none (no function is shown at a lower level than Get input record);
(b) Get input record, Process input, and Produce output (all of the lower
level functions) !

Structured programming enables you to follow a structured design and
produce a program more quickly than would traditional programming.
And the structured program will be easier to test and, most important,
considerably easier to read than a traditional program. In a typical busi-
ness computer installation, more programmer time is spent maintaining
(which includes modifying) old programs than is spent writing new ones.

" And programmer costs are the largest expense category in many comput-

er installations. Computer time. costs are coming down, while salaries
go up. Therefore many installations have decided against micro-efficien-
cies of "elegant" programming in favor of the more efficient use of human

resources available through structured programming.
Which of the following factors contribute to the demand for structured

programming ?
(a) Ct;mputer time is more expensive these days.
(b) Computer p'el.'sonnel are more expensive these days.
{c) Efficient use of machine resources is critical.

(d) Readable prdgrams are easier to maintain.

8 STRUCTURED COBOL

9.

10.

Each module of a structured program has one entry point and one exit
point. This makes it relatively easy for a programmer to read, write,
or understand a program. Names given to modules and pieces of data are
easier to read if they are meaningful. Instructions that have some mean-
ingful relationship to one another can be grouped together by spacing or
indentation. You'll be using all these techniques in later chapters as you
code structured COBOL programs.

Name two characteristics that make a structured program easy to
understand.

(any two of these) meaningful names for data and modules; indentatibn
and spacing to group instructions; separate modules for different func-
tions

Traditional programming relies on the flowchart to show the '"flow of con-

trol" in a program. Although flowcharts can be (and often are) adapted

for structured programming, flowcharts focus on control rather than on

functtoris so we will not use them in this book. We will use narrative

descriptions along with structured hierarchy charts and a pseudocode

(which you'll see shortly) to express program designs in this book.
Examine the following hierarchy chart.

~

Adjust
prices
l '
L. i]
Handle Handle
Read d valid invalid
recor data data
T
i 1 f 1
o Print) Print
Incirease new Bypasds error
price record recor message

Which narrative below fits the structure shown in the chart?
(a) Records that contain valid data will be bypassed.

(b) Records will be processed undef the control of either Handle
valid data or Handle invalid data.

THE STRUCTURE OF PROGRAMMING 9

+ _ (c) Prices in valid records only will be adjusted.

b, ¢ (both fit the chart)

11. Hierarchy charts show the general structure of a problem. Recall our
earlier discussion of types of programming problems.

(a) Which type of prbblem does the hierarchy in the last frame represent—

summary, update, report, or editing?

(b) Name the control ‘func.tions in that chart.

(a) update (we're changing something in the record)
(b) Adjust prices, Handle valid data, Handle invalid data

CONTROL STRUCTURES

Sequence Structure

12. In the normal way of operating, the computer executes one statement
after another, in sequence, unless it receives an instruction to the con-
trary. The sequence in which the instructions are given to the computer
determines the sequence in which they are executed—we can call this a
sequence structure. For example, suppose you want the computer to
print a line with your name. Your instructions (in everyday English)
might be : ' 3 .

1. Here is my name
2. Print it

No other sequence for these two instructions would make sense. Below
are some English instructions to find and print the total price. Number
them (from 1) in the correct sequence. ‘

(a) Multiply quantity by unit price to get total price
(b} Unit price is 7.00, gquantity is 5
(c) Print total price

(@) 2; (b)1; (c)3

Selection Structures

~ 13. Sometimes we don't want every instruction executed in sequence, but want
to select some instructions to be executed only under certain conditions.

10 STRUCTURED COBOL

For example, if an item is not food, we may have to add tax to its price.
In this case, we use a selection structure. The standard selection struc-
ture is the IF-THEN-ELSE, often simply called the IF structure. Here
is how we can show 4 selection control structure:

IF item is not food
THEN

add tax
ELSE :
don't add tax
ENDIF '

We use IF to specify a selection criterion—a condition. When the condi-
tion is true, we want the computer to do whatever we have written under
THEN. When the condition is false, we want the computer to do whatever
we have written under ELSE. The ENDIF marks the end of the IF control
structure. 3

The condition, whether it is true or false, determines whether the
THEN or ELSE action will be done. In no case will they both be done.
As you'll see later, either can be omitted, however. The selection struc-
ture above will have the same functional effect if it is written like this:

IF item is food
THEN

don't add tax
ELSE

add tax
ENDIF

See if you can write a selection structure (condition and general actions)
based on the chart in frame 10. We've included the special words for you.

IF
THEN

ELSE

There are two ways you might have answered this. Both are equally
correct, ’

IF data is valid IF data is not valid
THEN THEN
handle valid data handle invalid data
ELSE ELSE
- handle invalid data handle valid data

ENDIF ENDIF

THE STRUCTURE OF PROGRAMMING 11

14.

15.

The way we write the instructions here is not really computer code, so
we generally call it pseudocode. It simulates the sequence of statements
as you will code them in a comiputer program. A pseudocode segment can
be translated into COBOL, or almost any computer language.

Another item worth noting in the pseudocode selection structure is that

_the THEN and ELSE sections can each contain many actions. For example,

the THEN action "handle valid data' from the last frame could be replaced
with: ’

THEN
increase price
print new record
ELSE

.

Referring to frame 10, indicate here what sequence of actions would re-
place "handle invalid data" in the selection structure.

- e e e em m e e e e m oam om o ow oa

bypass record; print error message

The next action in sequence after an ENDIF will be executed whether the
condition was true or false. The pseudocode below combines the sequence
and selection structures. Examine it, then answer the questions that -
follow.

Get a card
IF employee is full-time
THEN
add 1 to full-time count
ELSE)
: add 1 to part-time count
ENDIF
Print name from card

(a) Suppose.the result of "Get a card" indicates a part-time employee.

Which instruction will be selected—THEN or ELSE?

(b) What instruction will be executed after '"add 1 to full-time count"'?

(c) What is the purpose of ENDIF?

(a) ELSE (the condition~—employee is full-time—is not true); (b) print
name from card; (c) it marks the end of the selection control structure

12 STRUCTURED COBOL

Repetition Structure

16.

17.

v

Besides sequence and selection, we often want to specify repetition, or
iteration, to have instructions executed repeatedly. We can specify that
a statement or group of statements will be executed repeatedly until a con-
dition becomes true. The control structure is called PERFORM UNTIL.

‘We specify that some actions will be performed until a condition becomes

true. Here is a simple COBOL repetition structure.

PERFORM UNTIL no more cards
add 1 to card-counter
print line
get card
ENDPERFORM

The structure specifies that the action statements will be executed
repeatedly until no more cards are in the file. Here "'no more cards"
represents a condition. The ENDPERFORM ‘marks the end of the PER-
FORM control. ’

(a) How many times will the statements be executed if the input deck has
no cards at all?
(b) How man& times will the statements be executed if there are 12 cards

- in the deck?

(c} What two control structures are represented in this example?

- . e o m = = e e e = e e = e =

(a) none; (b) 12; (c) sequence and repetition

The following pseudocode uses all three control structures—sequence,
selection, and repetition. 4

Get a card
PERFORM UNTIL no more cards
IF employee is full-time
THEN N
add 1 to full-time count
ELSE
add 1 to part-time count
~ ENDIF
Print name from card
Get a card
ENDPERFORM
Print count totals

