

PROGRAN
DERIVATION

The Development of
Programs From
Specifications

Geoff Dromey

Grittieh-Untver&fty, BNsbane, Australia

Sydney - Wokingham, England - Reading, Massachusetts
Menlo Park, California - New York - Don Mills, Ontario
Amsterdam - Bonn - Singapore - Tokyo - Madrid - San Juan

Preface

The primary aim of this book is to make the principles of program derivation
from specifications accessible to undergraduates early in their study of
computing science.

The proliferation of personal computers in the home and in schools
has meant that there are large numbers of people who have had exposure to
using computers and even to ‘writing’ programs in languages like BASIC.
This situation has left many people with the misconception that computing
science education is focused upon the coding and debugging of computer
programs, whereas this is far from the ideals and objectives of the science.
For too long people have tried to learn how to build programs without tae
support of a rigorous mathematical and logical framework. As a conse-
quence, the cost of developing high-quality software remains at a premiuimn.
There is but one chance of overcoming these problems, and that is to
recognize computing science for what it really is, a mathematically-bas:d
discipline concerned with the application of rigorous methods for tae
specification, design, and implementation of computer systems.

It is one thing to be able to write down a few pages of progrem
statements but it is an entirely different matter to produce correct programs
that provably satisfy their specifications. That anything less is acceptatle
merely reflects the stage of development of the discipline.

What we have to offer in this book is not something that can cure all
these problems. The intent has been to provide an introduction to the level
of precision, habits of mind, and modes of reasoning, necessary for
producing high-quality verifiable software at a reasonable cost.

There are plenty of computing science academics who have recog-
nized the need for rigour and have introduced the ideas of formal program
derivation into their courses. This in itself is not enough. Too often the
formal aspects of program derivation are not introduced to students up!i!
long after they ‘know’ how to write programs. The implicit messa;e
conveyed by a belated introduction to formal program derivation is that it s
not an essential part of the discipline — how could it be when they alreac y
know how to write programs! Essential things must always come early in a

711

viii PREFACE

course if they are to be taken seriously. Introducing program derivation
right from the outset is a key challenge facing computing science educators.
We have to face this challenge if we are to gain the advantages that formal
program derivation can deliver.

There is no question with the argument that it is easier to teach the
formal aspects of program derivation later in a course rather than near the
beginning, but this sort of reasoning completely misses the point. It has been
my repeated experience that very few students respond in the way we would
hope to a belated introduction to formal program derivation. They learn the
techniques but seldom attempt to apply them beyond the class exercises they
are given. This is a sorry state of affairs that can only be rectified by an early
exposure to formal program derivation.

The best time to do this is at the start of a university or college course
although some will prefer to offer material of this level in the second or third
years of a course. .

There are two key ideas in this book. The first is a model for the
stepwise development of programs. It is shown that programs can be
constructed by a sequence of refinements, each of which establishes the
postcondition, or goal, of the computation for progressively weaker precondi-
tions. The model makes a direct link between specifications and the stepwise
refinement process. Each refinement is guided by a transformation that
weakens the precondition specification for which the postcondition is
established. The state model for computation provides the foundation upon
which this model for stepwise refinement is built. Interpreting this model for
stepwise refinement directly, a program may be constructed by a sequence
of refinements each of which expands the set of initial states for which the
postcondition is established. This strategy realizes a limiting form of top-
down design.

The second key idea in this book establishes the connections between
data structure, the refinement process, and the program control structure that
the refinement process yields. The reason for trying to make these connec-
tions is to ensure that the control structure of derived programs matches the
structure of the data to be processed. Programs that possess this characteris-
tic are usually much easier to understand and maintain.

Presenting these key ideas is not by itself enough to make formal
program derivation palatable to novice programmers. The real key lies in
the nature of the exercises and examples that are considered. Formal
program derivation involves considerable notation and several difficult
concepts. If these notations and concepts are simply presented to students
and then the students are asked to work with and apply them, the chances of
success are very small. Students must be eased into formal program
derivation. One way of doing this is to start by focusing on interpretation
rather than application. Only after students have had very considerable
practice at interpreting formal specifications are they ready to start writing
and using them in program derivation.

PREFACE ix

The logic and mathematical groundwork provided in Chapters 2, 3,
and 4, together with their accompanying exercises, go a long way towards
building students’ confidence to tackle program derivation. Without paying
serious attention to the exercises there is little hope of learning how to derive
programs. It would have been easy to write this book and assume the
requisite logic and mathematical background. This path has not been taken
for several reasons. Firstly, most treatments of mathematics and logic have
not been designed to support the writing of specifications and the derivation
of programs. What is needed to support program derivation is a treatment of
discrete mathematics that presents it as both an abstract reasoning calculus
and as a notation suited for formal manipulation. As a consequence, the
treatment must be slow and thorough if students are to acquire the level of
mathematical maturity needed to apply effectively formal methods to
program derivation.

Throughout the book Dijkstra’s ‘guarded commands’ program design
language has been used to express derived algorithms. The decision to opt
for guarded commands rather than use a conventional program implementa-
tion language like Pascal or Modula-2 is not one that has been taken lightly.
There are two principal reasons for making this choice. Firstly, deriving
algorithms directly into an implemented programming language provides
too much unnecessary distraction. During the derivation process we need to
focus only on design considerations and not on implementation details.
Subsequent translation from guarded commands to a standard program-
ming language is essentially a mechanical process (automatic or otherwise)
that is easy to do after the hard work of derivation is complete. The second
important reason for opting to use guarded commands is that it provides a
very simple and concise notation for expressing algorithms.

We suggest that there is strong pedagogical merit in the overall stance
that we have taken.

There are several ways in which this book can be used to study
program derivation:

Programme 1 Abridged introduction to program derivation

To obtain a focused but limited introduction to the main ideas of program
dérivation the following material would need to be covered along with the
accompanying exercises:

Chapter 1 All sections

Chapter 2 Sections 2.3 and 2.4

Chapter 3 Section 3.2

Chapter 4 All sections

Chapter 5 All sections

Chapter 6 A selection of examples from each section

X PREFACE

This treatment would be deficient particularly with regard to the back- ‘
ground needed for advanced program specification and derivation.

Programme 2 Introduction to program derivation

For those who have previously had a- course in discrete mathematics,
Chapters 2 and 3 could be omitted from Programme 1 and selected examples
from Chapters 7, 8 and 9 could be added.

Programme 3 A second course In program derivation

Those who have previously had an introduction to program specification and
Jerivation would need to cover the following material:

Chapter 5 Sections 5.5,5.6 and 5.7
Chapter 6 Sections 6.1 t0 6.4
Chapters 7-12 All sections

The examples in the later chapters tend to be more advanced. Also, within
chapters the later examples are usually more difficalt.

Programme 4 Formal program derivation

Programmers, computer science graduates and others wishing to gain an
understanding of formal methods of program derivation might be best
advised first to read Chapter 1 and then study:

Chapter 4 All sections
Chapter 5 All sections
Chapters 6-12 Selected examples as required

In pursuing this programme it would probably be necessary to refer back to
Chapters 2 and 3 from time to time.

As a final word on using this book, proficiency in specifying problems and
formally deriving programs only comes with lots and lots of practice - there
zre no shortcuts. ‘ :

The time for a more formal and more careful approach to program-
ming has long since arrived! The words of Victor Hugo sum up the present
situation:

There is one thing stronger than all the armies of the world,
and that is an idea whose time has come.

Acknowledgements

There have been many friends, colleagues, and students who have helped
me with this book. 1 am particularly indebted to David Gries and Jifeng He

PREFACE X1

for a number of stimulating discussions in the early stages of this work. 1
would also like to thank Wiad Turski for helpful comments on some of the
ideas in Chapter 5. | also appreciate the helpful suggestions for improving
the manuscript made by David Billington, Trevor Chorvat, Andrew
McGettrick, Tony Hoare, and a number of anonymous referees.

I would like to thank the following eminent Computer Scientists for
permission to use their words of wisdom at the beginnings of Chapters:

R. W. Floyd, C. A. R. Hoare, F. P. Brooks, E. W. Dijkstra,
W. Turski.

The professionalism of Stephen Troth in bringing this manuscript 1o
publication has been of the highest order. His support and encouragement
together with that of editor Andrew McGettrick and production editor
Sheila Chatten is deeply appreciated. I would also like to thank Helen
Whiter, Olwen Schubert, Kathryn Stanford and Lenore Olsen for their care
and patience in preparing the manuscript.

Finally I would like to thank my wife, Aziza, and daughter, Tashen,
for their support and understanding throughout this project.

R. Geoff Dromey

Brisbane, Australia
June 1988

Publisher’s acknowledgements

The publisher would like to thank the following for giving their permission
to reproduce some of their material:

Cambridge University Press for R.G. Dromey, 1987, Derivation of Sorting
Algorithms from a Specification, The Computer Journal, 30(6); R.G.
Dromey and T. Chorvat, 1989, Structure Clashes — An Alternative to
Program Inversion, The Computer Journal(in press).

The Institute of Electrical and Electronic Engineers, Inc. for R.G. Dromey,
1988, Systematic Program Development, Transactions on Softwarc Engi-
neering, 14(1). (© 1988 IEEE). i

John Wiley and Sons Limited for R.G. Dromey, 1985, Program Develop-
ment by Inductive Stepwise Refinement and Forced Termination of Loops,
Software — Practice and Experience, 15(1), pp.1-28 and 29-39. Reproduced
by permission of John Wiley and Sons Limited.

Macmillan Publishing Company for a quotation from Aims of Education and
Other Essays by Alfred North Whitehead. Copyright 1929 by Macmillan
Publishing Company, renewed 1957 by Evelyn Whitehead. Reprinted with
permission.

Contents

Preface

Part1 TOOLS FOR PROGRAM DERIVATION
Chapter 1

1.1
1.2
1.3
1.4

Chapter 2

21
2.2
2.3
24
2.5

Chapter 3

31
32
33
34
35
3.6
37

Introduction

The Problem of Programming

The Role of Mathematics and Logic

How Programs Are Derived

Program Derivation — A First Look

Summary
Bibliography

Logic for Program Design

Introduction
Specification Methods
Propositional Calculus
Predicate Caiculus
Proof Methods
Summary

Exercises
Bibliography

Mathematics for Specification

Introduction

Set Concepts

Relations

Functions

Bags

Sequences and EBNF
Mathematical Induction
Summary

.~

vii

N W W

20

24

27

27
27
32
54
76
81
82

91

91

92
112
122
139
144
158
176

xiii

xiv CONTENTS

Chapter 4

4.1
4.2
4.3
4.4
4.5

Exercises
Bibliography

Specification of Programs

Introduction
Preconditions
Postconditions
Loop Invariants
Variant Functions
Summary
Exercises
Bibliography

Part2 MODEL FOR PROGRAM DERIVATION

Chapter 5

51
52
53
54
55
5.6
5.7

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Program Derivation
Introduction

State Model

The Weakest Precondition
Guarded Commands

Program Derivation - An Example
Model for Program Derivation
Systematic Decomposition
Summary

Exercises

Bibliography

From Specifications to Programs

Introduction

Specification Transformations
Generating Sub-problems

Generating Auxiliary Problems

Basic Examples .
Simple Loops B
Nested Loops

Summary

Exercises

Bibliography

Part3 THE DERIVATION OF PROGRAMS

Chapter 7
71

Searching

Introduction

178
185

187

187
188
193
206
219
226
227
242

245

245
247
250
265
282
293
312
318
319
323

325

325
328
330
333
340
345
368
394
395
396

399
399

7.2
7.3
7.4
7.5
7.6
1.7

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Chapter 9

9.1
9.2
9.3
9.4
9.5

Chapter 10

10.1
10.2
- 10.3
10.4
10.5
10.6
10.7

Linear Search

Binary Search
Two-dimensional Search
Common Element Search
Rubin’s Problem
Saddleback Search
Summary

Exercise

Bibliography

Partitioning

Introduction

Simple Pivot Partitioning
Straight Pivot Partitioning
Pivot Partitioning

Interval Partitioning
Finding the Kth Largest Element
Dutch National Flag
Summary

Exercise

Bibliography

Sorting

Introduction

Transformations of a Sorting Specification
The Selection Algorithms

The Insertion Algorithms

The Partitioning Algorithms

Summary

Exercise

Bibliography

Text Processing

Introduction

Simple Pattern Match
Simple Pattern Search
Boyer and Moore Algorithm
Text Editing

Text Formatting

‘Comment Skipping

Summary
Exercise
Bibliography

CONTENTS

XV

400
402
407
411
414
418
420
420
421

423

423
424
426
428
431
435
438
441
442
443

445

445
446
451

462

467
469

469

469
470
472
475
483
484
491
494
495
495

Xvi

CONTENTS

Chapter 11

11.1
11.2
11.3
11.4
11.5
11.6
11.7

Sequential Problems

Introduction

The Majority-element Problem

The Maximum Sum-section Problem
The Stores-movement Problem
Two-way Merge

Sequential File Update

The Telegrams Analysis Problem
Summary

Exercise

Bibliography

Part4 PROGRAM IMPLEMENTATION

Chapter 12

Index

12.1
12.2
12.3
12.4
12.5
12.6
12.7

Program Implementation

Introduction

Programming Style

Initialization of Loops
Termination of Loops

Loop Structuring

Lookahead Implementation
Forced Synchronization of Loops
Summary

Exercise

Bibliography

497

497
498
501
506
St
513
520
526
527
528

531

531
532
554
571
581
597
602
616
617
618

619

Part 1
TOOLS FOR PROGRAM
DERIVATION

A number of tools are needed to derive programs effectively.
Logic and discrete mathematics may be used to specify
problems adequately and to support the sequences of
constructive reasoning steps that must be made in deriving
and proving programs correct.

in Chapter 1 of this book we examine the role of logic and
mathematics in program derivation. We then go on to
introduce a model for formal program derivation. The
foundation on which program derivation is built is a precise
specification. The predicate calculus, together with set-based
notations and formalisms, provide a powerful set of tools for
specifying problems. They allow us to write concise
specifications that are readily amenable to the sort of
transformations that are needed to derive programs.

To derive and characterize programs several specialized
forms of specification are required. A precondition is used to
describe theinput or data that is to be processed, while the
output or goal of a computation is described by a -
postcondition. A third form of specification, an invariant, plays
a vital role not only in characterizing computations but also in
guiding the derivation of programs. A final form of
specification needed to model computations is the variant
function. Variant functions characterize the termination
properties of programs. All these different forms of
specification are discussed in Chapter 4.

Chapter 1
Introduction

There is always a first step in a journey of ten thousand miles
Chinese Proverb

%

1.1 The Problem of Programming

The premium quality of a program is its correctness. In spite of this, there are
very few complex programs in use today that do not contain some sorts of
errors, anomalies, or peculiarities. Fortunately, most of these defects are
_extremely subtle and become apparent only in very unusual circumstances.
The trouble is that very unusual circumstances do occur from time to time.
The root cause of the lack of quality in programs lies not simply with
the people responsible for producing the software but rather with the
inadequate methods that are employed to develop programs. The response
of the programming community to this situation has been to develop
methods for such things as:

® project management

e requirements analysis

e top-down problem decomposition
e structured programming

e abstract data types

4 INTRODUCTION

¢ information hiding
® program walkthroughs
® rigorous testing.

These developments have led to considerable improvements in
program quality. However, correctness remains a major problem. Program-
mers still regard it as inevitable that the programs that they write will contain
errors (or ‘bugs’ as they are more usually called). In fact many practmoners
claim that as much as one third to one half of all programming effort is
expended in ‘debugging’ programs. Worse still, the act of ‘removing a bug’
more often than not introduces other-bugs.

The present situation is not a happy one particularly because we are
increasing our dependency on the use of computers in life-critical applica-
" tion§ suchgas air-traffic control, nuclear reactor control and life-support
systems.

The following random sample of program errors that have come to
public attcation in recent times gives a glimpse of the seriousness of the
problem.t

e The space shuttle Discovery flew upside down during a laser-beam
missile defence expenment because it expected information in
nautical miles and was given it in feet.

® The first version of the F-16 navigation software inverted the aircraft
whenever it crossed the equator.

® A version of the Apollo II software had the moon’s gravity appearing
repulsive rather than attractive.

e A computer error caused a US warship’s gun to fire in the opposite
- direction from its intended target during an exercise off San Francisco
in 1982.

o In February 1984, the cash machines of two UK banks had serious
compatibility problems because one remembered the leap year and
the other did not.

e In 1983 the Vancouver Stock Exchange index was found to be at 725

" points rather than 960 points due to a cumulative error in the way the
index was calculated.

® A series of accidental radiation overdoses was administered by cancer
therapy machines in Georgia, USA in 1986 because of an error in the
controlling computer program.

Such errors are just the tip of the iceberg.
How is it that software is so susceptible to errors? Much of the
difficulty lies in the sheer complexity of the tasks being programmed. There

+ Many other examples can be found in the Software Engineering Notes reference quoted in the
Bibliography.

\
THE ROLE OF MATHEMATICS AND LOGIC 5

are usually a huge number of variables and relationships that need to be
taken into account when building any substantial software system.

Errors can be introduced into a software system at three distinct
stages. There are:

* @ defects in the requirements that result from the failure of the software
to cope with all aspects of the environment in which it is used;
® design errors that result from the failure of the design to match the
stated requirements;
® implementation defects that result from the failure of an implementa-
tion to satisfy its design details.

Requirements defects and design errors propagate right down to the
implementation level. In fact these sorts of errors are usually much more
insidious and harder to correct than implementation defects.

The question that needs to be asked is ‘given the problems with
program correctness, is there a way forward to greater reliability and higher
productivity’? The answer at this stage has to be a qualified ‘yes’ but it will
require a substantial change in our approach to programming.

1.2 The Role of Mathematics and Logic

What, above all else, needs to be recognized is that programming is a
mathematical activity and programs are complex mathematical expressions.
These perceptions, if taken to their logical conclusions, completely change
our whole conception of programming.

A mathematical view of programming tells us that

& programs can be proved correct in much the same way as theorems in
mathematics are proved correct;

® the ‘intended meaning’ of a program can be described using mathe-
matics and logic;

® the assertion that a program satisfies a specification is a mathematical
statement.

Probably the most important aspect of a mathematical view of
programming is as follows:

The development of a proof of correctness and the con-
struction of a correct program that satisfies its specification
can proceed hand in hand. A program can literally be derived
from its specification. '

"6 INTRODUCTION

It is this approach to program development that holds the key to greater
reliability and higher productivity.

These facts about programming have been known for some time.
Why haven't programmers, and the software industry in general, been
rushing to adopt the mathematical approach to programming?

The reason usually given for rejecting the practicality of a mathemati-
cal approach to programming is that it can only be used for small programs.
What this line of argument overlooks is that formal methods of specification
are now being successfully applied to a growing number of quite large
software problems. Once there is a formal specification base, a mathemati-
cal approach to deriving a program to satisfy the specification becomes much
more within the realms of possibility. The problem of size remains daunting
if we insist that manual formal program derivation in the large should be
handled in exactly the same way as formal program derivation in the small.

There are two ways of confronting the ‘size problem’. We can adopt
an approach similar to that taken in the applied sciences and engineering
where the mathematics applied in the field has been adapted to the size of
the problem. Not all variables and relationships that might be considered in
a laboratory experiment are taken into account. Instead, the mathematics is
used to focus on critical relationships and crucial variables. In making these
simplifications the problem is still solved with rigour within a supporting
mathematical framework. Enough formal reasoning is retained to allow
others to verify their reasoning and if necessary detect errors in correctness.
Such an approach to program derivation is possible provided we have a
formal specification as our starting point.

The other alternative for dealing with the size problem is to rely upon
a semi-automated programming environment that can assist with technical
steps such as proof checking, equivalence transformations, weakest precon-
dition calculations, and so on. We may expect, as the discipline matures,
that such tools will achieve greater prominence. With their assistance the
program designer will bé relieved of a lot of tedious detail and the need to
perform mechanical tasks.

There is one other essential ingredient needed to support a mathe-
matical approach to program derivation. It will require the support of all
concerned in the program development process. This means changes in
attitudes and practices on the part of the managers, the programmers, and

the customers. Without strong support from all groups the task will be very
difficult.

1.3 How Programs Are Derived -

The principal steps in deriving a program are Speciﬁca;tion, design and
implementation.

