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Preface

The lifeblood sustaining any field of intellectual endeavor is the infu-
sion of a steady stream of important, unsolved (but in principle solvable)
problems. Projective geometry, for example, once a flourishing corner of
the mathematical forest, is nowadays about as dead as the dodo bird for
the simple reason that the wellspring of good problems ran dry about a
hundred years ago. On the other hand, the currently fashionable rage for
chaos was totally unknown to all but a few far-sighted adventurers and
connoisseurs of the mathematically arcane until the rather recent work
of Lorenz, Smale, Feigenbaum, Yorke, May, Réssler, and many others
stimulated the outpouring of problems that sustain today’s chaologists,
their students, and camp followers. These examples illustrate clearly
George Polya’s well-known dictum that “Mathematics is the art of prob-
lem solving.” But unlike scientists in other disciplines, mathematicians
have a special word for the solution to one of their problems—they call
it a theorem.

Mathematics is about theorems: how to find them; how to prove
them; how to generalize them; how to use them; how to understand
them. Five Golden Rules is intended to tell the general reader about
mathematics by showcasing five of the finest achievements of the math-
ematician’s art in this century. The overall plan of the book is to look at a
few of the biggest problems mathematics has solved, how they’ve been
solved and, most importantly, why the solutions matter—and not just
to mathematicians. Thus, the goal of Five Golden Rules is to enlighten,
entertain, and educate by example, rather than by precept.
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FIVE GOLDEN RULES

Stanislaw Ulam once estimated that mathematicians publish more

than 200,000 theorems every year. The overwhelming majority of these
are completely ignored, and only a tiny fraction come to be understood
and believed by any sizable group of mathematicians. Given the fact that
mathematics has been practiced on this planet for several millennia, at
first sight it seems a daunting prospect to try to single out the “greatest”
theorems even of this century from a list that by now must number well
into the millions. But the task can soon be cut down to size by the impo-
sition of a small number of conditions, or “filters,” separating the great
theorems from the pretenders. To pinpoint the five jewels highlighted in
this book, here are the criteria I employed:

Significance: Did the theorem break a major logjam in the develop-
ment of mathematics? Or did the result lead to the establishment of
new fields of mathematical enquiry? Example: Morse’s Theorem,
which sparked off the development of singularity theory.

Beauty and Scope: Is the theorem intrinsically “beautiful,” in just
the same sense that a poem or a painting is beautiful? Does it
summarizes compactly a large body of knowledge? And does the
theorem shed light on questions over a broad range of areas inside
mathematics? Example: Brouwer’s Fixed-Point Theorem, which
enables us to establish the existence of solutions to equations under
very general mathematical conditions in a wide variety of settings.

Applications: Does the theorem find important applications outside
mathematics? Do the mathematical structures whose existence the
theorem underwrites provide the basis for a more complete under-
standing of the world of nature and/or humankind? Example: The
Minimax Theorem, which forms the cornerstone of much of the
mathematical work in economics and elsewhere on what it means
to say the actions of decisionmakers are “rational.”

Proof Method: Did the proof of the theorem require the use of new
techniques of logic or modes of reasoning? Could these methods
be used to make major inroads on other important problems? Ex-
ample: The Halting Theorem, whose proof focused attention on
the idea of using an algorithm to establish mathematical truths.

Philosophical Implications: Does the theorem tell us something
important about human beings that we didn’t know before? Do the
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theorem’s conclusions impose major restrictions or, conversely,
open up new opportunities for us to obtain deeper insights into what
itis we can know about the universe and about ourselves? Example:
Godel’s Incompleteness Theorem, which imposes limitations upon
the ability of the human mind to formalize real-world truths.

In order to qualify for inclusion on our roll call of honor, a the-
orem would have to score high in most, if not all, of these categories.
It doesn’t take too much imagination to see that employing these fil-
ters quickly whittles down Ulam’s universe of millions of theorems to
manageable size.

But great theorems do not stand in isolation; they lead to great
theories. As indicated above, an important part of the significance of a
theorem lies in the theories it contributes either to creating or in some
way to nourishing. And for this reason, our focus here is at least as much
on great theories of twentieth-century mathematics as it is on the great
theorems themselves.

A quick glance at the book’s contents might lead the reader to ask,
Why are the theorems considered here so old? The most recent entry
on the list of the Big Five is the Simplex Method, which dates back
to around 1947, while the earliest is Brouwer’s Fixed-Point Theorem,
{Which was published in 1910. If it’s modern, that is, twentieth-century,
mathematics we’re after, why is there nothing from the work of the past
50 years? This is especially puzzling when by common consensus more
significant mathematical work has been done in the latter half of this
century than in all previous centuries combined.

This is a pretty reasonable question, so it deserves a carefully con-
sidered reply. Basically, the answer resides in the fact that it’s really the
great theories we're after, not the great theorems. And great theories in
mathematics are like great poems, great paintings, or great literature: it
takes time for them to mature and be recognized as being “great.” This
brings to mind a remark made by Michael Faraday to a British prime
minister who was visiting his workshop. When Faraday described his
latest discovery in electricity, the distinguished gentleman asked, “What
good is it?” Faraday replied, “What good is a newborn baby? You have
to wait for it to grow up.” And so it is with great theorems, as well.
Generally speaking, it seems to take at least a generation or two for a
great theorem to “grow up,” that is, to be recognized as the seed from
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which a great theory has subsequently grown. So, what we see as a great
theory today almost necessarily had its origin in results dating from the
pre~World War II era. And I have no doubt that a similar book written
ten years from now will focus on theorems of the 1960s and 1970s,
which only now are starting to crystallize in the form of still more great
theories. Let me note that sometimes a great theory requires advances
in technology, too. For instance, I doubt seriously that two of the great
theories treated in this book—optimization theory and the theory of
computation—would have appeared in any such volume had it not been
for the major advances that have taken place in computing technology
over the past few decades.

When the idea for this book first struck me, I queried a number of
friends and mathematical scholars as to what they would include in a
volume addressing the great theorems and theories of twentieth-century
mathematics. Someday I’d like to publish that list, which unfortunately is
a bit too long to comfortably include here. But when I had made the final
choices, someone asked me why the book was so “impure”; why were all
the theories (with the possible exception of topology) in areas that some
euphemistically (or pejoratively!) call “applied mathematics” (a term,
incidentally, that I abhor). Why is there nothing here that might be termed
*“pure” mathematics? The reasons are twofold: (a) we’re all prisoners of
our tastes and background, and mathematically speaking, mine lean in
the applied directions, and (b) I wanted the book to focus on why ordinary
people (that is, nonacademics) should care about mathematics as a factor
in their daily lives, a goal that again biased the material to the applied
side of the house. I would certainly look forward to a similar book by
someone with leanings different from mine, dealing perhaps with great
modern results (and theories) such as the Atiyah-Singer Index Theorem
(partial differential equations), The Classification Theorem for Finite,
Simple Groups (group theory) and the Hahn-Banach Theorem (func-
tional analysis). But I don’t think I will be the person to write that book.

Since I've claimed that the book is for those who want to know
about mathematics and why it matters, I'm at least implicitly saying that
this is a book aimed at the nonmathematician. This fact requires some
“deconstruction.” At the outset, let me say that to write about mathe-
matics using no mathematics ar all is, in my opinion, a copout, doing a
disservice both to an intelligent reader and to the field of mathematics
itself. To write such “baby talk” about mathematics requires either treat-
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ing only topics that lend themselves to drawing pictures, like geometry
and fractals, or discussing puzzles involving the properties of numbers,
simple probability theory or elementary logic that as often as not miss the
excitement—and the content—of where the real mathematical action is
taking place. So 1 have chosen a different, less journalistic—and far more
dangerous—route. The path this book has taken was dictated long ago
by Einstein, when he stated, “A theory should be as simple as possible—
but no simpler.” So allow me to try to translate this semicryptic remark
into a statement about the reader at whom I am aiming this book.

The target reader for the material presented here will have a back-
ground in mathematics that I like to call sophisticated. This does not
mean that he or she actually knows any mathematical techniques or
procedures—there is very little by way of technical mathematics in this
book (none, actually), but there is a lor by way of mathematical con-
cepts, ideas, and chains of reasoning. Moreover, I do not believe in the
well-chronicled statement by Stephen Hawking’s editor to the effect that
every equation in a book cuts its sales in half. My ideal reader won’t
believe it, either. The odd equation will turn up from time to time in
the pages to follow, as will an occasional Greek symbol and even a
graph or two. But a reader who cares about learning what mathemati-
cians have achieved—and why it matters—won’t be deterred in the least
by such formalities. He or she will swat these low-level barriers aside
as if they were nothing more than pesky mosquitos. So the book is for
anyone who’s not afraid to confront real mathematical ideas—head-on.
Just about anyone who’s had a course in high-school algebra or geome-
try, and who retains at least a modicum of enthusiasm for mathematical
ideas fits into this category—even if the details of that long-ago course
have faded from memory. It’s the ideas and one’s willingness to confront
them that counts, not the technical details.

What about those who do have a more detailed background in
mathematics? If comments on the draft versions of the book are anything
to judge by, even many professional mathematicians will find material
in the book to interest them. Of course, what they will not find is the
kind of rigor and detailed proofs that one expects from a mathematical
textbook or research monograph. This is not a textbook for “wannabe”
mathematicians (although it has worked well as a text in undergraduate
liberal arts courses of the “mathematics-for-poets” type). Anditcertainly
is not a research monograph. It’s pure exposition. But for those who care
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to dig deeper into the details of the arguments that are only sketched in
broad outline here, I have liberally sprinkled the book’s bibliography
section with a number of more detailed accounts of each topic at various
levels of mathematical difficulty.

As always in putting together a work such as this, information and
encouragement from many sources was invaluable. So let me close this
already overly long preface by performing that most pleasurable of all
tasks associated with the writing of any book, namely, the tipping of my
hat to those friends and colleagues who have given so generously of their
time on behalf of the book. Ian Stewart, Phil Davis, Don Saari, Martin
Shubik, Atlee Jackson, and Greg Chaitin offered%heir thoughts and wise
counse] on both the content and style of the book. In this same regard, I
wish to single out for special honors my former teacher, friend, and now
colleague, Tom Kyner. His careful reading and comments on virtually
every line of the original manuscript materially improved the final ver-
sion, as well as saved me from several flat-out technical faux pas and
other inanities and infelicities. For TgX typesetting consultations, it’s al-
ways a pleasure to acknowledge Michael Vulis and Berthold Horn. And
Jennifer Ballentine of Professional Book Center was a font of wisdom
(no pun intended) and advice when it came to matters of book design.

Finally, accolades magna cum laude to the book’s editor, Emily
Loose, who has been a constant source of encouragement and eagle-
eyed editing, both of which contributed mightily to a far better final
product than I had any right to expect. My thanks to all of the above and
my absolutions, as well, for any and all errors that managed somehow
to creep into the final product. These, I'm sorry to say, remain solely my
responsibility.

JLC
Santa Fe, New Mexico

Xiv



Contents

Preface ix

Chapter 1 The Minimax Theorem (Game Theory) 1

Deadly Games ® Games of Strategy ® Two-Person, Zero-Sum
Games s The Concord Arsenal Game #= Keep ’Em Guessing » The
Minimax Theorem ®» Fighters and Bombers & Computing Optimal
Mixed Strategies ® Game Theory—A Taxonomy ® Chicken & The
Cuban Missile Crisis » Mixed-Motive Games = Leader = Battle of
the Sexes ® The Prisoner’s Dilemma » The Emergence of Coopera-
tion = Real Worlds, Artificial Games

Chapter 2 The Brouwer Fixed-Point Theorem (Topology) 43

Needles and Haystacks = The Shape of Space ® Topology = Topo-

logical Equivalence ® The Fixed-Point Game = Solving Equations

= Dollars and Sense = Guns and Butter » Disks, Squares, and Fixed
Points = Compactness and Convexity » Porcupines and Cyclones =
Determination of Fixed Points ® The Fixed-Point Property = Reach-
ing for the Moon ® Occupational Mobility ® Top Dog

vii



CONTENTS

Chapter 3 Morse's Theorem (Singularity Theory) 85

That’s the Way the Paper Crumples » A Taylor’s Tale s Tugging on
Taylor’s “Tay]l” = Look-Alikes = Morse’s Theorem & The Thom
Classification Theorem ® Bridges and Beams » Bifurcations, Catas-
trophes, and Equilibria » How Local is Local? ® The Skape of
Things = Laughs and Cries

Chapter 4 The Halting Theorem (Theory of Computation) 135
Calculation versus Computation ® Turing’s Miraculous Machine =
The Uncomputable = Ad Infinitum? = Form and Content = The

Undecidable » Manufactured Minds = Omega Is the End = Tough
Times = Models of Computation

Chapter 5 The Simplex Method (Optimization Theory) 181

The Math of a Traveler » Thinking Linearly = The Simplex Method
= Duals and Diets » Integer Programming ® Graphs and Bridges «
And So It Flows = The Welfare of the Masses » Hill Climbing =
Routing in Networks = Getting the Most for Your Money

Bibliography 217

Index 227

viii



CHAPTER

1

The Minimax Theorem

Game Theory






Deadly Games

In everyday conversation, a “game” is often thought of as a mere pastime
for schoolchildren, a way to spend their day avoiding homework and pi-
ano lessons, perhaps playing instead something like blindman’s bluff,
tag, or hide-and-seek. But to many adults, the term also conjures up im-
ages of ascetic chess players hunched over boards in smoke-filled cafes
or captains of industry in equally smoke-filled corporate boardrooms,
all desperately seeking strategies that will give them an advantage over
their opponent(s). These latter situations, in which the outcome of the
game is determined by the strategies employed by the players, form the
starting point of what we now term the mathematical theory of games.
And the essential ingredient making game theory a “theory” rather than
a collection of heuristics, rules of thumb, anecdotal evidence, and old
wives’ tales is the notion of a minimax point, a set of optimal strategies
for all players in the game. Let’s begin with a very real-world example
illustrating the general idea.

In early 1943, the northern half of the island of New Guinea was
controlled by the Japanese, while the Allies controlled the southern
half. Intelligence reports indicated that the Japanese were assembling a
convoy to reinforce their troops on the island. The convoy could take
one of two different routes: (1) north of New Britain, where rain and bad
visibility were predicted, or (2) south, where the weather was expected
to be fair. It was estimated that the trip would take 3 days on either route.

Upon receiving these intelligence estimates, the Supreme Allied
Commander, General Douglas MacArthur, ordered General George C.
Kenney, commander of the Allied Air Forces in the Southwest Pacific
Area, to inflict maximum possible damage on the Japanese convoy. Ken-
ney had the choice of sending the bulk of his reconnaissance aircraft on
either the southern or the northern route. His objective was to maximize
the expected number of days the convoy could be bombed, so he wanted
to have his aircraft find the convoy as quickly as possible. Consequently,
Kenney had two choices: (1) use most of his aircraft to search the north-
ern route, or (2) focus his search in the south. The payoff would then
be measured by the expected number of days Kenney would have at
his disposal to bomb the convoy. The overall situation facing the two
commanders can be represented in the “game tree” of Figure 1.1, which
summarizes what came to be termed the Battle of the Bismarck Sea.
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Japanese

Days of Bombing 2 1 2 3
for Kenney

Figure 1.1 Game tree for the Battle of the Bismarck Sea.

(Technically, this kind of game tree is what game theorists call the
extensive form of the game.)

The diagram should be read in the following way: Starting at the
top node, the Japanese commander can choose either the left branch (Sail
North) or the right branch (Sail South). Each of these branches leads to
a node labeled “Kenney,” indicating that these nodes are decision points
for General Kenney. The choices for Kenney are now to take the left
branch (Search North), or to select the right branch (Search South).
After the two commanders have made their choices, the tree “bottoms
out” at one of the numbers listed below each of the termination nodes.
This number is the days of bombing intelligence estimates claim are
available to Kenney if the decisions of the two commanders led to that
particular endpoint. In reality, of course, the commanders did not make
their choices in the sequential fashion suggested by the diagram. Rather,
each chose his course of action independently, without knowledge of
what the other was going to do.

It’s clear that in making their decisions, General Kenney and the
Japanese commander have diametrically opposed interests: What’s good
for General Kenney is bad for the Japanese commander, and vice versa.
Thus, we measure the payoff to the Allies as the number of days of
bombing, while we count the “reward” to the Japanese as the negative
of this number. So what one side wins, the other side loses. This is an
example of what’s called a “zero-sum situation,” since the payoffs to the
two commanders add up to zero.

A more compact way of expressing the overall situation is to use
what’s termed a payoff matrix, which defines the normal form of the
game. It is shown below for the Battle of the Bismarck Sea. The rows



