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Preface

These are the proceedings of CaLC 2001, the first conference devoted to cryp-
tography and lattices. We have long believed that the importance of lattices
and lattice reduction in cryptography, both for cryptographic construction and
cryptographic analysis, merits a gathering devoted to this topic. The enthusiastic
response that we received from the program committee, the invited speakers, the
many people who submitted papers, and the 90 registered participants amply
confirmed the widespread interest in lattices and their cryptographic applica-
tions.

We thank everyone whose involvement made CaLC such a successful event;
in particular we thank Natalie Johnson, Larry Larrivee, Doreen Pappas, and the
Brown University Mathematics Department for their assistance and support.

March 2001 Jeffrey Hoffstein, Jill Pipher, Joseph Silverman
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An Overview of the Sieve Algorithm for the
Shortest Lattice Vector Problem

Miklés Ajtai, Ravi Kumar, and Dandapani Sivakumar

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120
{ajtai,ravi,siva}@almaden.ibm.com

We present an overview of a randomized 20(™) time algorithm to compute
a shortest non-zero vector in an n-dimensional rational lattice. The complete
details of this algorithm can be found in [2].

A lattice is a discrete additive subgroup of R". One way to specify a lattice is
through a basis. A basis B = {b1,...,bn} is a set of linearly independent vectors
in R™. The lattice generated by a basis B is L = L(B) = {3, cibi | ¢i € Z}.
The shortest lattice vector problem (SVP) is the problem of finding a shortest
non-zero vector (under some norm, usually £;) in L. The a-approximate version
of SVP is to find a non-zero lattice vector whose length is at most a times the
length of a shortest non-zero lattice vector.

SVP has a rich history. Gauss and Hermite studied an equivalent of SVP
in the context of minimizing quadratic forms [4,7]. Dirichlet formulated SVP
under the guise of diophantine approximations. Using the convex body theorem,
Minkowski gave an existential bound on the shortest vector in a lattice [13].

Though the extended Euclidean GCD algorithm can be used to solve SVP
in two dimensions, the first algorithmic breakthrough in n dimensions was ob-
tained in a celebrated result of Lenstra, Lenstra, and Lovasz [10], who gave
an algorithm (the LLL algorithm) that computes a 2"/2-approximate shortest
vector in polynomial time. This was improved in a generalization of the LLL al-
gorithm by Schnorr [14], who obtained a hierarchy of algorithms that provide a
uniform trade-off between the running time and the approximation factor. This
algorithm runs in n®MkO®*) steps to solve a k2(*/*)-approximate SVP. For in-
stance, a polynomial-time version of this algorithm improves the approximation
factor obtained by the LLL algorithm to 2(I°8logn)*/logn Kannan [8] obtained
a 20(n1987) time algorithm for the exact SVP. The constant in the exponent of
this algorithm was improved to about 1/2 by Helfrich [6]. Recently, Kumar and
Sivakumar solved the decision version of n*-approximate SVP in 2°(®) time [9).

On the hardness front, SVP for the L., norm was shown to be NP-complete
by van Emde Boas [3]. Ajtai [1] proved that SVP under the £; norm is NP-hard
under randomized reductions. Micciancio [12] showed that the a-approximate
SVP remains NP-hard for any a < /2. Lagarias, Lenstra, and Schnorr [11]
showed that n-approximate SVP is unlikely to be NP-hard. Goldreich and Gold-
wasser [5] showed that /n/logn-approximate SVP is unlikely to be NP-hard.

We sketch a randomized 29(") algorithm for SVP (in 3 norm) for a lattice L
in R™. In fact, in 2°( time, our algorithm can find all a-approximate shortest
vectors for any constant o > 1.

J.H. Silverman (Ed.): CaLC 2001, LNCS 2146, pp. 1-3, 2001.
© Springer-Verlag Berlin }'Ieidelber(}Q(\)]l :



2 Miklés Ajtai, Ravi Kumar, and Dandapani Sivakumar

We make a few simplifying assumptions about the lattice L: (1) the length of
shortest vector is at least 1 and at most 2 — this can be realized by appropriately
scaling L; (2) the length of the longest vector in the basis is at most 20(?) —
this can be realized by appropriate applications of the LLL algorithm.

We create a large (sides of exponential length) parallelepiped P that is fairly
close to being a cube. Then we uniformly sample a large number of lattice points

zi,...,z2n, N = 200 from P N L, and to each sample z;, we add a uniform
perturbation vector y; of expected length O(1) to obtain a sequence of points
zjy,...,zn. For each perturbed lattice point z;, we will keep track of two lattice

points: its “true identity” z;, and an “approximator” a;, initially set to 0.
Then, we use the following sieve procedure — given sufficiently many points
in R™ of length at most R, identify a small set of “representatives” from the set
of points and a large set of “survivors” such that for every survivor point, there
is a representative at distance at most R/2. We repeatedly apply the sieve to
the vectors z; — a;; for each survivor z; —a; with representative z; —a;, we know
that the distance between x; —a; and z; — a; is about half the distance between
z; and a;. Therefore, a; + z; — a; is a better approximation to z;, and since
z; is close to its true identity z;, we define the new approximator for z; to be
a; + z; — a;. In these steps, once the true identity of a point is revealed, we will
not use it in the future. We repeat this process until the distance between the
points and their approximators are bounded by another constant. Finally, if z;
still survives and has an approximator a;, output the lattice point w; = z; — a;.
Since both 2; and a; are close to z;, with high probability, the length of w; is
bounded by a constant. We will denote this process as the basic algorithm.

Note that if the basic algorithm stops with a non-zero w;, we already have a
constant factor approximation algorithm for SVP. To ensure that w; is non-zero
with good probability and to obtain the shortest vector, we make the following
argument. Let u denote a shortest vector in L. Let w = w; be a lattice point
of constant length that is output by the procedure above. Let z be a sample
point from which w was obtained, and let z € L be the true identity of z. Since
the perturbations are small, we can argue that the probability (conditioned on
z being a sample) that one of z & u is the true identity of z is at least 2-9(")
times the probability that z is the true identity of z. Furthermore — and this
is the crucial point — the basic algorithm is oblivious to the true identity of z.
Using this fact, we will argue that for some w, w 4+ u has at least 2=°(?) times
the probability of w to be the output of the basic algorithm. Since the number
of lattice points in the ball of constant radius around the origin is at most 20("),
we obtain that there is at least one w € L whose probability of being output is
at least 2-°(") and w + u has the probability of being output at least 2=,
Therefore, by repeating the basic algorithm 2°(®) times we can ensure that with
high probability both w and w + u are output. Thus, the final algorithm is
the following: repeat the basic algorithm 2°(") times, take all possible pairwise
differences of the points output by the basic algorithm, and output the shortest
of these vectors.

More details of this algorithm can be found in [2].
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Low Secret Exponent RSA Revisited

Johannes Blomer and Alexander May

Department of Mathematics and Computer Science
University of Paderborn, 33095 Paderborn, Germany
{bloemer,alexx}Cuni~paderborn.de

Abstract. We present a lattice attack on low exponent RSA with short
secret exponent d = N° for every & < 0.29. The attack is a variation of an
approach by Boneh and Durfee [4] based on lattice reduction techniques
and Coppersmith’s method for finding small roots of modular polynomial
equations. Although our results are slightly worse than the results of
Boneh and Durfee they have several interesting features. We partially
analyze the structure of the lattices we are using. For most § < 0.29
our method requires lattices of smaller dimension than the approach by
Boneh and Durfee. Hence, we get a more practical attack on low exponent
RSA. We demonstrate this by experiments, where § > 0.265.

Our method, as well as the method by Boneh and Durfee, is heuristic,
since the method is based on Coppersmith’s approach for bivariate poly-
nomials. Coppersmith [6] pointed out that this heuristic must fail in some
cases. We argue in this paper, that a (practically not interesting) variant
of the Boneh/Durfee attack proposed in [4] always fails. Many authors
have already stressed the necessity for rigorous proofs of Coppersmith’s
method in the multivariate case. This is even more evident in light of
these results.

Keywords: Low secret exponent RSA, cryptanalysis, Coppersmith’s
method, lattice reduction.

1 Imtroduction

In this paper we consider the problem of breaking the RSA cryptosystem for
short secret keys. An RSA public key is a pair (N, e) where N = pq is a product
of two n-bit primes. The corresponding secret key d is chosen such that it satisfies
the equation

ed=1 (mod 1¢(N)),

where ¢(N) = (p — 1){(qg - 1).

The first result showing that RSA is insecure, if the secret key is too small,
is due to Wiener. In 1990, Wiener [20] showed that d < 3 N°25 leads to a poly-
nomial time attack on the RSA system. Wiener’s method is based on continued
fractions. Basically, Wiener showed that d is the denominator of some conver-
gent of the continued fraction expansion of e/N. A variant of Euclid’s algorithm
computes the continued fraction expansion of a number. Since N,e both are
public, this shows that d can be computed efficiently from the public key (N, e).

J.H. Silverman (Ed.): CaLC 2001, LNCS 2146, pp. 4-19, 2001.
© Springer-Verlag Berlin Heidelberg 2001
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Recently, Boneh and Durfee [4] proposed an attack on RSA, that shows that
RSA is insecure provided d < N%2%2, Unlike Wiener’s attack, the attack by
Boneh and Durfee is a heuristic. It builds upon Coppersmith’s result for finding
small solutions of modular polynomial equations [6}. Coppersmith’s method for
the univariate case is rigorous but the proposed generalization for the muiltivari-
ate case is a heuristic. More precisely, Boneh and Durfee show that for a small
secret key d, the number s = —ﬁz'—‘l can be found as a small solution to some
modular bivariate polynomial equation. Once s is known, one can immediately
solve the equations s = —2%‘1 and N = pq for the unknowns p and ¢. Using
Coppersmith’s method, which in turn is based on the famous L3-lattice reduc-
tion algorithm, Boneh and Durfee reduce the problem of finding s to finding a
common root of two bivariate polynomials f(z,y), g(z,y) over the integers. As
proposed by Coppersmith, finding a common root of f, g is done by first comput-
ing the resultant r{y) of f, g with respect to the variable z. Provided r # 0, the
parameter s, and hence the factorization, can be found by computing the roots
{over Z) of r. Unfortunately, this method, as well as any other method based
on Coppersmith’s approach for multivariate polynomials!, fails if the resultant
r is identically 0. As it has never been proved that r % 0, the Boneh/Durfee
approach is heuristic.

In this paper we study the method by Boneh and Durfee in more detail.
In Section 4, we propose a new lattice for cryptanalysing low secret exponent
RSA with d < N%290 The new approach uses the same heuristical assumption as
Boneh/Durfee. Although the new attack does not improve the bound d < N°292
of Boneh and Durfee [4], it has several advantages. First, the lattice dimension
is reduced. Therefore, in practice we are able to get closer to the theoretical
bounds. Second, the new lattice basis is triangular. This leads to rather simple
proofs. Third, the new lattice basis takes advantage of special properties of the
lattice vectors. We believe that some of our structural results in Section 4 can
be applied to other applications of Coppersmith’s method as well.

Actually, Boneh and Durfee present three different variations of the Copper-
smith methodology to break RSA versions with small secret exponent d. The
first one works for d < N'/4, hence this variant basically reptoduces Wiener’s
result. The second variation of Boneh and Durfee works for d < N%284 Finally
they have a method that works for d up to N0-292,

We made the experimental observation, that the first method of Boneh and
Durfee, supposed to work for d < N'/4 always failed. In fact, in all experiments
the resultant » mentioned above was identically zero. Although one cannot re-
cover the factorization by resultant computation, we show that RSA with secret
key d < 1N'/% can be broken using lattice reduction in dimension 2. In fact,
we show that for an appropriately chosen lattice, a shortest vector in the lattice
immediately reveals the secret key d.

Since we have not found examples where the other two variants for d < N?-284
and d < N9 described by Boneh and Durfee fail, this observation in no
way invalidates the results of Boneh and Durfee. On the other hand, this is

! This includes among others [1, 4, 8, 12].



6 Johannes Blomer and Alexander May

to our knowledge the first case mentioned in literature, that an application of
Coppersmith’s approach fails in general. Some authors [6,14] already pointed
out that the heuristic must fail in some cases, but no general failure has been
reported for real applications of the method.

Although we are not quite able to rigorously analyze the Boneh and Durfee
method for d < N1/4, in Section 5 we prove several results that almost completely
explain the behavior observed in experiments. Many authors already stressed the
necessity of a rigorous analysis of methods based on Coppersmith’s approach in
the multivariate case. This is even more evident in light of our results.

In Section 6 we give experimental results for our new attack on RSA with
short secret key d. We carried out cryptanalysis of secret keys up to d < N%278,
We also compared our experimental results with the experimental results of
Boneh and Durfee. In [3], they only provided examples with d < N%265 [n all
cases we considered, our method was faster.

2 The Boneh-Durfee Lattice

In this section we review the lattice attack by Boneh and Durfee on low exponent
RSA. For an introduction into lattice theory and lattice basis reduction, we refer
to the textbooks [9,17]. Descriptions of Wiener’s RSA attack and the method
of Coppersmith can be found in [6,20]. For a good overview of RSA attacks, we
refer to a survey article of Boneh [2).

Let d < ¢®. We assume that the size of e is in the order of the size of N. If
is smaller, the attack of Boneh and Durfee becomes even more effective (see {4},
section 5).

All known attacks on RSA with short secret exponent focus on the identity

ed:lmod@ & ed+k(ﬁ—2+—l+s)=l, (1)
where k € Z,s = —L’;‘l and d are unknown quantities. Since e < ﬂ;—’l, we obtain

k < d. Boneh and Durfee [4] look at equation (1) modulo e.
k(¥+s) —1=0mode

They define the polynomial

f(x)y):z(A+y)_l

with A = %’f—l Let X = ¢’ and Y = €”®. We know, that f has a root (zq,yo) =
{k, s) modulo e, that satisfies |z¢| < X and |yo| < Y. To transform the modular
equation into an equation over the integers, Boneh/Durfee use 'a‘theorem of
Howgrave-Graham [11]. Given a polynomial p(z,y) = }_; ; ai;2'y’, we define

the norm |p(z, y)|? = i af;.
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Theorem 1 (Howgrave-Graham [11]). Let p(z,y) be a polynomial which is
a sum of at most w monomials. Suppose that p(zo,yo) = 0 mod e™ for some
positive integer m, where |zo| < X and |yo| < Y. If |p(z X, yY)| < €™ //w, then
p(zo, yo) = 0 holds over the integers.

Next, Boneh and Durfee define polynomials
gik(z,9) = £ fF (2, )™ * and hjx(z,y) = (2, y)e™ "

for a given positive integer m.

In the sequel, the polynomials g; x are referred to as z-shifts and analogously
the polynomials h; i are referred to as y-shifts. By construction, the point (0, yo)
is a root of all these polynomials modulo e™. Thus, we can apply Howgrave’s the-
orem and search for a small norm linear combination of polynomials g; k(2 X, yY)
and h; x(zX,yY). This is done by using the L? lattice reduction algorithm. The
goal is to construct a lattice that is guaranteed to contain a vector shorter than
e™ /[ w.

Boneh and Durfee suggest to build the lattice spanned by the coefficient
vectors of the polynomials g; x, hj & for certain parameters ¢, j and k. For each
k=0,...,m, they use the z-shifts g; x(zX,yY) for i = 0,...,m — k. Addition-
ally, they use the y-shifts h;x for j =0, ...,t for some parameter .

In the sequel, we call the lattice constructed by Boneh and Durfee the lattice
Lpp. The basis for Lgp is denoted by Bgp. The lattice Lpp is spanned by the
row vectors of Bgp. Since the lattice depends on the parameters m and ¢, we
sometimes refer to the parameters by Bpp(m,t)} to clarify notation.

It is easy to see, that the basis vectors of lattice Lgp form a triangular
matrix. We give an example of the lattice basis for the parameter choice m = 2
andt =1.

BBD(Q,I):

[ 1 z Ty [ z? 2y r2y? | Y zy? 1'2y31
EPVAR PV

e‘ e

ze? e2X

fe |—€e| eAX eXY

z%e? el X2

zfe —eX eAX? eX?Y

f2]1]-24X -2XY |A?X? 2AX2Y X?Y?

ye’ e’Y

yfe eAXY —eY eXY?
| yf? —-2AXY A2X%Y 2AX%Y? Y -2XY? X?Y3]

Boneh and Durfee showed for § < 0.284, one can find m,t such that an
I3-reduced basis of Lpp contains vectors short enough to apply Howgrave’s
theorem and factor the modulus N. This was improved in the same paper to
d < 0.292 by using non-triangular lattice bases. This is up to now the best
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bound for cryptanalysis of low secret exponent RSA. The attack works under
the assumption that polynomials obtained from two sufficiently short vectors in
the reduced basis have a non-vanishing resultant. Although heuristic, no failure
of the method for sufficiently large é is known.

Boneh and Durfee also argue that using ¢ = 0, that is only z-shifts are used
to construct a lattice basis, one obtains already an attack working for § < 0.25.
This reproduces Wiener’s result. However, experiments show that the method
of Boneh and Durfee never works when using only z-shifts. In Section 5, we will
explain why this is the case. Of course, this failure of the Boneh/Durfee method
in the special case where only z-shifts are used does not affect the method in
general. It only points out that one has to be careful when using Coppersmith’s
heuristic in the multivariate case.

3 Notations

Since the lattice Lpp defined in Section 2 is the starting point of our further
constructions, we introduce some notations on the rows and columns of the
lattice basis Bgp. .

We refer to the coefficient vectors of the polynomials g; x(zX,yY) as the
X-block. The X-block is further divided into X;,l = 0, ..., m, blocks, where the
block X; consist of the [+ 1 coefficient vectors of g; x with i + k =1. These [ + 1
vectors are called X x, that is the k-th vectors in the X; block is the coefficient
vector of gj_g .

The coefficient vectors of the polynomials h;x form the Y-block. We define
the Y; block as the block of all m + 1 coefficient vectors of polynomials that are
shifted by y’. The k-th vector in the block Y; is called Yj x, it is identical to the
coefficient vector of h; .

Every column in the basis Bpp is labeled by a monomial z'y/. All column
vectors with label z'y/, I > j, form the X() column block. Analogously, we
define the Y (! column block to consist of all column vectors labeled with z'y'+.

In the example in Section 2, the horizontol lines divide the basis Bpp(2, 1)
into the blocks X1, X3, X3 and Y;. Similarly, the vertical lines divide Bgp (2, 1)
into the column blocks X(1), X X®) and Y. In this example, the basis
entry in row Y) » and column 2%y is A2X?Y.

4 A New Method for All § < 0.290

We introduce an alternative method for factoring the modulus N if d < N%-290,

This does not improve the bound § < 0.292 given by Boneh and Durfee. However,
it has several advantages compared to their approach.

First, our method significantly reduces the lattice dimension as a function of
m and t. The practical implication is that we are able to get closer to the the-
oretical bound. We give experimental results for § > 0.265. Second, our proofs
are simple. As opposed to the Boneh/Durfee lattices for § < 0.292, the lattice
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bases we use in the attack for 4 < 0.290 remain triangular. Hence, determinant
computations are simple. Third, our construction makes use of structural prop-
erties of the underlying polynomials. Thus, it should apply also to other lattice
constructions using these polynomials.

Construction of the new lattice L with basis B

1. Choose lattice parameters m and ¢ and build the Boneh-Durfee lattice basis
Bgp(m,t) as explained in Section 2.

2. In the Y; block of the basis Bgp remove every vector except for the last
vector Y; m, in the Y;_; block remove every vector except for the last two
vectors Y; m—1 and Y; ,, and so on. Finally, in the Y; block remove every
vector except for the last ¢ vectors Yp—t41,...,Ym.

3. Remove every vector in the X-block except for the vectors in the ¢ + 1 blocks
Xm_g, Xm—t+1y ey Xm.

4. Delete columns in such a way that the resulting basis is again triangular.
This is, remove all column blocks X (@, X(1) _ x(m=t=1) Pyrthermore in
the column block Y® I =1,...,t, remove the columns labeled with iyt
for0<i<m-—t+41.

This construction leads to a triangular basis B of a new lattice L, which will be
used in our approach. Since B depends on m and t, we sometimes write B(m, t).

As opposed to Boneh and Durfee, we do not integrate more y-shifts to im-
prove the bound § < 0.284, instead we remove some z-shifts.

Remark 1. In our construction, we take the pattern

(PO;Plaant) = (1,2,...,t+ 1)

That is, we take the last p;, 0 < ¢ < t vectors from the Y,_; block and the last
pr X-blocks and delete columns appropriately. The proofs in this section easily
generalize to every strictly increasing pattern (po,p1,...,Pt), po < p1 < -+ < py.
This includes among others the pattern used by Boneh/Durfee [4{] to show the
bound d < N®2%2, We give the proof of this generalization in the full version of

the paper.

Applying the construction to the example given in Section 2, we obtain the
following lattice basis of L with parameters m =2 and t = 1.

- z zy 22 22y e2y? | 2P
ze?| e2X
fe | eAX eXY
B(2,1) = z2e? e’ X?
zfel —eX eAX? eX?Y
2 |-24X —2XY |A’X?2AX?%Y X?*Y?
| yf? I —2AXY ATX?Y 2AX°Y?X%Y3 |
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Let B be the non-triangular basis we obtain after Step 3 of the construction.
That is, B consists of the remaining basis vectors of Bpp in the construction
after removing row vectors but without removing columns. The lattice spanned
by the row vectors of B is called Lg. We adopt the notations of Section 3 for
the rows and columns of B and B. For example, the row vector X; x of B is the
coefficient vector of g;_x x, where we removed all the entries specified in Step 4
of the construction. In the basis B(2, 1) above, the row vector X3 is the vector
(0,0,e2X2,0,0,0).

We call a column vector z'y’ that appears in the basis B but not in the
basis B a removed column of B. The bases B and B are constructed using
the same coefficient vectors, where in B certain columns are removed. Having a
vector u = ), . g cpb in the span of B, one can compute the corresponding linear
combination 4 = Zbe g cob of vectors in B with the same coefficients ¢;. Hence,
the vector dimension of @ is larger than the vector dimension of u. One can
regard the additional vector entries in @ as a reconstruction of the vector entries
of u in the removed columns. Therefore, we call @ the reconstruction vector of u.

The row vectors

Xig,(l=m—t,...,mk<l) and Yj,k,(j:l,...,t;k:m—t+j,...,m)

form the basis B. These vectors are no longer the coefficient vectors of the poly-
nomials gk k(zX,yY) and h; x(xX,yY), respectively, since we remove columns
in Step 4 of the construction. However in order to apply Howgrave’s theorem,
we must ensure that we construct a linear combination of bivariate polynomi-
als that evaluates to zero modulo e™ at the point (zo,y) = (k,s). Hence, we
still have to associate the rows X; x and Y;x with the polynomials g;— « and
h; k. The basis vectors of B represent the coefficient vectors of these polyno-
mials. Therefore, after finding a small vector u = ), p cbb in L, we compute
the reconstruction vector @ = ) ,c g cbb in L. That is, we reconstruct the en-
tries in the removed columns. Once the reconstruction vectors of two sufficiently
short vectors in L are computed, the rest of our method is the same as in the
Boneh/Durfee method.

In the remainder of this section we show that short vectors u in L lead to
short reconstruction vectors @ in Lg. To prove this, we first show that removed
columns of B are small linear combinations of column vectors in B. We give an
example for the removed column z°y° in B(2, 1). Applying the construction in
the following proof of Lemma 2, we see that this column is a linear combination
of the columns z'y' and z%y? in B.

0 0 0
—e eXY 0
o] 1 0 1 0
0| Xxvy 0 Tox?y? 0
1 -2XY X2y?
0 —92AXY 2AX?Y?
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Lemma 2. All removed columns in the column blocks X' i < m —t, are linear
combinations of columns in B. Moreover, in these linear combinations, the co-
efficient for a column vector in X) 1 > m —t, can be bounded by ﬁ,:— - ¢,
where ¢ depends only on m and t.

Proof: If 'y is a removed column of B, we show that z'y’ is a linear combi-

nation of columns z*t1yi+! | .. g™mym~iti If £+ly’+! is a removed column,
we can repeat the argument to show that z**!y'*! is a linear combination of
the remaining columns z**+2y/+2 | . . z™y™~**J _ Continuing in this way until

all removed columns have been represented as linear combinations of columns in
B, proves the lemma. Hence, it suffices to prove the following claim.

Claim 1. Ifz'y is a removed column of B, then z'y’ is a linear combination of
the columns zitlytl git2yg+2  emMym—i+I  where the coefficient of column
oyttt b =1 ... 'm—i, is given by

(')

Note, that the coefficient ¢, = (j ‘J'.'b) depends only on m and ¢, since 7, j depend
on m and t.

We will prove Claim 1 by showing that for each row in B(m,t) the entry of
the column z*y in this row is a linear combination of the entries of the columns
z*+0y7+b in this row, with the coefficients as in the claim. We prove this for the
rows in the X-block and Y-block separately.

Let X;x be a row in block X;, where I > m —¢. The coeflicients in this row
are the coefficients of the polynomial e™ *z!~* f¥(z X yY). By definition of f
this polynomial is

kP
e Rtk P (2 X yY) = emTE Y TN C(—1)F (2) (:’) AP=IXPY gpHi—kya,

p=0g=0
(2)

To obtain the coefficient of ztoy/+? in e™~F !~k fk(z X, yY), weset p=i—1+
k+b and ¢ = j + b. Hence, this coefficient is given by

; k i—l+k+b\ . X
m—k(_1yi—-l+b i—l+k—7 yi~l+k+by i+b
" =1 Q—l+k+b)( j+b )A X Y

. - . . k i—-l+k+b
— m—kAz—l+k—] z—l+kyj _1)i-! -1 b XY b.
¢ X 0T ED Gkt ivs JEY)

We can ignore the factor e™ =% A*~!+k—j Xi-l+kyi(_1)i=! common to all entries
in row X x in the columns 2'*+°y/+% Then Claim 1 restricted to row X, reads



