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Preface

This is a book in advanced linear algebra in which invariant subspaces of
matrices are the central notion and the main tool. To the authors’ knowl-
edge it is the first book written with such a theme. It contains a reasonably
comprehensive treatment of geometrical, algebraic, topological and analyti-
cal properties of invariant subspaces. As well, an important part of the work
consists of applications to matrix polynomials, rational matrix functions,
linear systems, and matrix quadratic equations.

Parts of the book are written like a textbook and are easily accessible for
undergraduate students. Gradually, the exposition changes to approach the
style, and admit the content, of a monograph. Here, recent achievements
and some unsolved problems are presented. A large portion of the content
of the book has not appeared before in books. The fundamental character of
the mathematics, its accessibility, and its importance in applications should
make this a widely useful work for experts and students in mathematics,
science, and engineering.

This is the third book written jointly by the authors. The first book is
Matrix Polynomials, published by Academic Press in 1982, and the second is
Matrices and Indefinite Scalar Products, published by Birkhduser Verlag in
1983. These three books are connected and, to some extent, one led to
another. Material that could not be included in one of the books became the
starting point for the next. Moreover, invariant subspaces play an important
role in the first two books and indicated to us the need for a systematic
treatment of this subject.

The authors are pleased to acknowledge continuing support, throughout
the development of this work, from the Natural Sciences and Engineering
Research Council of Canada and from the Nathan and Lily Silver Chair in
Mathematical Analysis and Operator Theory of Tel Aviv University. Con-
stant support has also been provided by the staffs of the School of
Mathematical Sciences, Tel Aviv University, and the Department of
Mathematic§ and Statistics of the University of Calgary. We are especially
grateful to 'Wacqueline Gorsky in Israel and Pat Dalgetty in Canada for
skillful and speedy work on our typescripts. In addition, the second pamed
author is pleased to acknowledge a Killam Resident Fellowship awarded for

vii
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the W.inter Term of 1985 to assist in the completion of the book, and
the third named author gratefully acknowledges support from the basic
Researc.h. Fund administered by the Israel Academy for Science and
Humanities, and also from the U.S. National Science Foundation.

1. GoHgErG
P LANCASTER
L. RobMmanN

Calgary, Alberta, Canada
July 1986
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Introduction

. Invariant subspaces are a central notion of linear algebra. However, in

existing texts and expositions the notion is not easily or systematically
followed. Perhaps because the whole structure is very rich, the treatment
becomes fragmented as other related ideas and notions intervene. In
particular, the notion of an invariant subspace as an entity is often lost in the
discussion of eigenvalues, eigenvectors, generalized eigenvectors, and so on.
The lmportance of invariant subspaces becomes clearer in the context of
operator theory on spaces of infinite dimension. Here, it can be argued that
the structure is poorer and this is one of the few available tools for the study
of many classes of operators. Probably for this reason, the first books on
invariant subspaces appeared in the framework of infinite-dimensional
spaces. It seems to the authors that now there is a case for developing a
treatment of linear algebra in which the central role of invariant subspace is
systematically followed up.

The need for such a treatment has become more apparent in recent years
because of developments in different fields of application and especially in
linear systems theory, where concepts such as controllability, feedback,
factorization, and realization of matrix functions are commonplace. In the
treatment of such problems new concepts and theories have been developed
that form complete new chapters in the body of linear-algebra. As examples
of new concepts of linear algebra developed to meet the needs of systems
theory, we should mention invariant subspaces for nonsquare matrices and
similarity of such matrices.

In this book the reader will find a treatment of certain aspects of linear
algebra that meets the two objectives: to develop systematically the central
role of invariant subspaces in the analysis of linear transformations and to
include relevant recent developments of linear algebra stimulated by linear
systems thedty The latter are not dealt with separately, but are integrated
into the text in a way that is natural in the development of the mathematical
structure.



2 Introduction

The first part of the book, taken alone or together with selections from
the other parts, can be used as a text for undergraduate courses in
mathematics, having only a first course in linear algebra as prerequisite. At
the same time, the book will be of interest to graduate students in science
and engineering. We trust that experts will also find the exposition and new
results interesting. The authors anticipate that the book will also serve as a
valuable reference work for mathematicians, scientists, and engineers. A set
of exercises is included in each chapter. In general, they are designed to
provide illustrations and training rather than extensions of the theory.

The first part of the book is devoted mainly to geometric properties of
invariant subspaces and their applications in three fields. The fields in
question are matrix polynomials, rational matrix functions, and linear
systems theory. They are each presented in self-contained form, and—rather
than being exhaustive—the focus is on those problems in which invariant
subspaces of square and nonsquare matrices play a central role. These
problems include factorization and linear fractional decompostions for mat-
rix functions; problems of realization for rational matrix functions; and the
problem of describing connections, or cascades, of linear systems, pole
assignment, output stabilization, and disturbance decoupling.

The second part is of a more algebraic character in which other properties
of invariant subspaces are analyzed. It contains an analysis of the extent to
which the invariant subspaces determine the parent matrix, invariant sub-
spaces common to commuting matrices, and lattices of subspaces for a single
matrix and for algebras of matrices. .

The numerical computation of invariant subspaces is a difficult task as, in
general, it makes sense to compute only those invariant subspaces that
change very little after small changes in the transformation. Thus it is
important to have appropriate notions of “stable”” invariant subspaces. Such
an analysis of the stability of invariant subspaces and their generalizations is
the main subject of Part 3. This analysis leads to applications in some of the
problem areas mentioned above.

The subject of Part 4 is analytic families of invariant subspaces and has
many useful applications. Here, the analysis is influenced by the theory of
complex vector bundles, although we do not make use of this theory. The
study of the connections between local and global problems is one of the
main problems studied in this part. Within reasonable bounds, Part 4 relies
only on the theory developed in this book. The material presented here
appears for the first time in a book on linear algebra and is thereby made
accessible to a wider audience.

Part One

Fundamental

Properties of
Invariant Subspaces
and Applications

Part 1 of this work comprises almost half of the e?ntire book. It ipcludes whgt
can be described as a self-contained course in !1near algebra with empt;fms
on invariant subspaces, together with substantial dgvelopments of app lca(;
tions to the theory of polynomial and rational mamx—v_alued functxons,dand
to systems theory. These applications demal}d extensions of tbe stan arl
material in linear algebra that are included in our treatment in a na(;uraf
way. They also serve to breathe new life into an otherwise familiar b(]) g o
knowledge. Thus there is a considerable amount Of. material here (inc lu m%
all of Chapters 3, 4, and 6) that cannot be found in other books on linea
algf:;::(.)st all of the material in this part can be understood by readers who
have completed a beginning course in linear algebra, 'fxlthOugh tl?erg are
places where basic ideas of calculus and complex analysis are required.

e
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Chapter One

Invariant Subspaces:
Definition, Examples,
and First Properties

This chapter is mainly introductory. It contains the simplest properties of
invariant subspaces of a linear transformation. Some basic tools (projectors,
factor spaces, angular transformations, triangular forms) for the study of
invariant subspaces are developed. We also study the behaviour of invariant
subspaces of a transformation when the operations of similarity and taking
adjoints are applied to the transformation. The lattice of invariant sub-
spaces of a linear transformation—a notion that will be important in the
sequel—is introduced. The presentation of the material here is elementary
and does not even require use of the Jordan form.

1.1 DEFINITION AND EXAMPLES

Let A: ¢"—> ¢" be a linear transformation. A subspace # C ¢" is called
invariant for the transformation A, or A invariant, if Ax € M for every
vector x € M. In other words, / is invariant for A means that the image of
M under A is contained in #; AM C M. Trivial examples of invariant
subspaces are {0} and €". Less trivial examples are the subspaces

KerA={xe¢"| Ax=0}
and
ImA={Ax{xE ("}

'

Indeed, as Ag =0&Ker A for every x € Ker A, the subspace Ker A is A
invariant. Also, for every x € {", the vector Ax belongs to Im A; in

particular, A(Im A) CIm A, and Im A is A invariant. )

5



6 Invariant Subspaces

More generally, the subspaces

Ker A" ={xe{"|A"x=0}), m

1,2,...
and
Im A" ={A"x|x€ ¢"), m=1,2,...

are A invariant. To verify this, let x € Ker A™, so A™x =0. Then A"(Ax) =
A(A"x) =0, that is, Ax € Ker A™. This means that Ker A” is A invariant.
Further, let x €Im A™, s0 x = A™y for some y € {". Then Ax = A(ATy) =
A"(Ay), which implies that Ax€Im A™ So Im A™ is A invariant as
well.

When convenient, we shall often assume implicitly that a linear trans-
formation from €™ into ¢ is given by an n X m matrix with respect to
the standard orthonormal bases e,=(1,0,...,0), e,=(0,1,0, ... ,0),

n=(0,0,...,0,1) in " e,...,e, in ¢™

The following three examples of transtormations and their invariant
subspaces are basic and are often used in the sequel.

EXAMPLE 1.1.1. Let

A, 1 0
0 A :
A= . ANEC
: 1
0 - 0 A

(the n X n Jordan block with A, on the main diagonal). Every nonzero
A-invariant subspace is of the form Span{e,, . . . , e.}, where e, is the vector
0,...,0,1, 0,...,0) with 1 in the ith place. Indeed, let ./ be a nonzero
A-invariant subspace, and let

n
x=2 e, a€(
i=1

be a vector from J# for which the index k = max{m|1<=m=n, a, #0) is
maximal. Then clearly

M CSpan{e,, ..., e}

On the other hand, the vector x = T, a,e;, o, #0 belongs to /. Hence,
since # is A invariant, the vectors ’

Definition and Examples 7

k
X, = Ax — Apx = > ae;_,
i=2

k
X = Axy = Agx, =Z‘ ac€;
=

X = Ax, 5~ Ax L, = oy

also belong to #. Hence the vectors
! x

e, =—x,_

1 ak k-1

1
€= ;;(xk—z - e)

: 1 k-1
e, = —(x -2 a,.e,.)
i=1

a
belong to A as well. So
Span{e,,...,e, } C M

and the equality
Span{e,,...,e,} =M

follows. As for every y = L¥_, B:¢; €Span{e,, ..., e,} we have
k .
Ay = Ay + > Bie;_, ESpan{e,, ..., €.}
i=2
The subspace Span{e,, ..., e,} is indeed A invariant. The total number of

A-invariant subspaces (including {0} and ") is thus n + 1.
In this example we have

_[{0) if Ay #0
KerA_{Span{el} if 2,=0
and
(¢ it A #0
ImA_{Span{el,...,e,,_l} if A=0

As expected, these subspaces are A invariant. [

-

EXAMPLE 113‘% Let A = Ay, where [ is the n X n identity matrix. Clearly,
every subspace in ¢" is A invariant. Here the number of A-invariant
subspaces is infinite (if n > 1).




8 Invariant Subspaces

Note that the set Inv(A) of all A-invariant subspaces is uncountably
infinite. Indeed, for linearly independent vectors x, y € ¢" the one-
dimensional subspaces Span{x + ay}, @ € R are all different and belong to
Inv(A). So they form an uncountable set of A-invariant subspaces.

Conversely, if every one-dimensional subspace of " is A invariant for a
linear transformation A, then A = A,/ for some A,. Indeed, for every x #0
the subspace Span{x} is A invariant, so Ax = A(x)x, where A(x) is a
complex number that may, a priori, depend on x. Now if A(x,)# A(x,)
for linearly independent vectors x, and x,, then Span{x, +x,} is not A
invariant, because

Ax) + x) = A(x,)x, + A(xy)x, & Span{x, + x,}

Hence we must have A,=A(x) is independent of x#0, so actually
A=)l O

Later (see Proposition 2.5.4) we shall see that the set of all A-invariant
subspaces of on n X n complex matrix A is never countably infinite; it is

either finite or uncountably infinite.

EXAMPLE 1.1.3. Let

A0 0
= . ’\2
A=]| - (n=2)
0 A,
where the complex numbers A,, ..., A, are distinct. For any indices 1=
iy <---<i, = n the subspace Span{e, ,...,e;} is A invariant. Indeed, for

k

= 2 ae; € Span{e, ,. .., e}

we have
k
x= 21 A€ € Span{e; ,..., €.}
=

It turns out that these are all the invariant subspaces for A. The proof of this
fact for a general n is given later in a more general framework. So the total
number of A-invariant subspaces is

(k-7

Definition and Examples 9

Here we shall check only that the 2 X 2 matrix

A o]
= #*
A [0 Al A7 A,

has exactly two nontrivial invariant subspaces, Span{e,} and Span{e,}.
Indeed, let # be any one-dimensional A-invariant subspace

M =Span{x} , x=ae, +ae,#0

Then Ax = @, A€, + a,Ae, should belong to # and thus is a scalar muitiple
of x,:

aAe, + ahe, =B, et Be,

for some B € ¢. Comparing coefficients, we see that we obtain a contradic-
tion A, = A, unless &, =0 or a, = 0. In the former case # = Span{e,} and in
the latter case # = Span{e,}.

In this example we have Ker A =Span{e;} (when det A =0), where
io is the index for which A, =0 (as we have assumed that the A, are
distinct and det A =0, there is exactly one such index), and Im A=
Span{e; | i#i,}. O

The following observation is often useful in proving that a given subspace
is A invariant: A subspace # = Span{x,, ..., X,} is A invariant if and only
if Ax, EMfori=1,..., k. The proof of this fact is an easy exercise.

For a given transformation A: ¢"— ¢" and a given vector x€ (",
consider the subspace

M =Span{x, Ax, A’x, ...}

We now appeal to the Cayley—Hamilton theorem, which states that
L7y oA’ =0, where the complex numbers a,, . . . , a, are the coefficients of
the charactenstlc polynomial det(Af — A) of A:

det(AI— A) =2, a;A’
j=0

(By writing A as an n X n matrix in some basis in ", we easily see from the
definition of the determinant that det( A — A) is a polynomial of degree n
with «, =1.) Hence A*x with k=n is a linear combination of
x, Ax, ..., A" 'x, so actually

f;‘, M = Span{x, Ax, Ax, ..., A" 'x)

The preceding observation shows immediately that # is A invariant.” Any



10 Invariant Subspaces

A-invariant subspace ¥ that contains x also contains all the vectors
Ax, A’x, ..., and hence contains . It follows that  is the smallest
A-invariant subspace that contains the vector x.

We conclude this section with another useful fact regarding invariant
subspaces. Namely, a subspace 4 C ¢ is A invariant for a transformation
A: ¢"— ¢" if and only if it is (@ A + BI) invariant, where «, B are arbitrary

complex numbers such that « # 0. Indeed, assume that A is A invariant.

Then for every x € M we see that the vector
(aA+ Bl)x=aAx + Bx

belongs to M. So M is (@A + BI) invariant. As
_1 B
A= a(aA + BI) al

the same reasoning shows that any (aA + B/) invariant subspace is also A
invariant.

1.2 EIGENVALUES AND EIGENVECTORS

The most primitive nontrivial invariant subspaces are those with dimension
equal to one. For a transformation A: ¢"— ¢" and some nonzero x € ¢,
therefore, we consider an A-invariant subspace of the form # = Span{x}.
In this case there must be a A, € ¢ such that Ax = Ayx. Since we then have
A(ax) = a(Ax) = Ay(ax) for any a € ¢, the number A, does not depend on
the choice of the nonzero vector in 4. We call A, an eigenvalue of A, and,
when Ax = Ayx with 0# x € ¢", we call x an eigenvector of A (corresponding
to the eigenvalue A,). Observe that, since (o] — A)x = 0, the eigenvalues of
A can also be characterized as the set of complex zeros of the characteristic
polynomial of A; gpA(/\)dé‘det( Al — A).

The set of all eigenvalues of A is called the spectrum of A and is denoted
by o(A). We have seen that any one-dimensional A-invariant subspace is
spanned by some eigenvector. Conversely, if x, is an eigenvector of A
corresponding to some eigenvalue A,, then Span{x,} is A invariant. (In
other words, A is the operator of multiplication by A, when restricted to
Span{x,}.)

Let us have a closer look at the eigenvalues. As the characteristic
polynomial ¢,(A) = det(Al — A) is a polynomial of degree n, by the funda-
mental theorem of algebra, ¢,(A) has n (in general, complex) zeros when
counted with multiplicities. These zeros are exactly the eigenvalues of A.
Since the characteristic polynomial and eigenvalues are independent of the
choice of basis producing the matrix representation, they are properties of
the underlying transformation. So a transformation A: ¢"— " has exactly
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n eigenvalues when counted with multiplicities, and, in any event, the
number of distinct eigenvalues of A does not exceed n. Note that this is a
property of transformations over the field of complex numbers (or, more
generally, over an algebraically closed field). As we shall see later, a
transformation from R" into R" does not always have (real) eigenvalues.
Since at least one eigenvector corresponds to any eigenvalue A, of A it
follows that every linear transformation A: ¢”— ¢" has at least one one-
dimensional invariant subspace. Example 1.1.1 shows that in certain cases a
linear transformation has exactly one one-dimensional invariant subspace.

We pass now to the description of two-dimensional A-invariant subspaces
in terms of eigenvalues and eigenvectors. So assume that A is a two-
dimensional A-invariant subspace. Then, in a natural way, A determines a
transformation from A into #. We have seen above that for every trans-
formation in a (complex) finite-dimensional vector space (which can be
identified with ¢™ for some m) there is an eigenvalue and a corresponding
eigenvector. So there exists an x, € #\{0} and a complex number A, such
that Ax, = Ayx,. Now let x, be a vector in # for which {x, x,} is a linearly
independent set; in other words, # = Span{x,, x,}. Since A is A invariant it
follows that

Ax, = poXy + pyx,

for some complex numbers p, and u,. If u, =0, then x, is an eigenvector of
A corresponding to the eigenvalue u,. If u, # 0 and w, # A,, then the vector
y=—pexe + (A, — 1,)x, is an eigenvector of A corresponding to u, for
which {x,, y} is a linearly independent set. Indeed

Ay = —poAxg + (X — ) Ax; = = pohoXo + (Ao = py ) poXo + 1y X,)
= (Ao = B)MX) ~ By MoXo = By Y
Finally, if p,#0 and u, = A,, then x, is the only eigenvector (up to
multiplication by a nonzero complex number) of A in 4. To check this,
assume that agx, + a,x, a; #0, is an eigenvector of A corresponding to an
eigenvalue »,. Then
Alagxy + ayx,) = yyagx, + vya,x, (1.2.1)
But the left-hand side of this equality is
apAxy + oy Ax; = agAgxy + a;(Mexg + AgX;)

and comparif;fg this with equality (2.1), we obtain

Ay, = yya agy + oy g = Yya
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which (with «, #0) implies A, = y, and a,pu, =0, a contradiction with the
assumption g, # (. However, note that the vectors z = (1/y,)x, and x, form
a linearly independent set and z has the property that Az — A,z = x,,. Such a
vector z will be called a generalized eigenvector of A corresponding to the

eigenvector x,,.
In conclusion, the two-dimensional invariant subspace 4 is spanned by

two eigenvectors if and only if either u, =0 or p, #0 and u, # A,. If g, #0,

and u, = A4, then A is spanned by an eigenvector and a corresponding
generalized eigenvector.

A study of invariant subspaces of dimension greater than 2 along these
lines becomes tedious. Nevertheless, it can be done and leads to the
well-known Jordan normal form of a matrix (or transformation) (see Chap-
ter 2).

Using eigenvectors, one can generally produce numerous invariant sub-
spaces, as demonstrated by the following proposition.

Proposition 1.2.1

Let A\, ..., A, be eigenvalues of A (not necessarily distinct), and let x, be an
eigenvector of A corresponding to A,,i=1,..., k. Then Span{x,,...,x,}
is an A-invariant subspace.

Proof. For any x=ZXf , ax,ESpan{x,,...,x,}, where o, € €, we
have

k k
= 2 a,Ax; = 2 a;Ax;
i=1 i=1

so indeed Span{x,,...,x,} is A invariant. O

For some transformations all invariant subspaces are spanned by eigen-
vectors as in Proposition 1.2.1, and for some transformations not all
invariant subspaces are of this form. Indeed, in Example 1.1.1 only one of
the n nonzero invariant subspaces is spanned by eigenvectors. On the other
hand, in Example 1.1.2 every nonzero vector is an eigenvector correspond-
ing to Ay, so obviously every A-invariant subspace is spanned by eigen-
vectors.

1.3 JORDAN CHAINS

We have seen in the description of two-dimensional invariant subspaces that
eigenvectors alone are not always sufficient for description of all invariant
subspaces. This fact necessitates consideration of generalized eigenvectors as
well. Let us make a general definition that will include this notion. Let A, be
an cigenvalue of a linear transformation A: ¢"— ¢". A chain of vectors
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Xy Xy, - .., X is called a Jordan chain of A corresponding to A, if x, # 0 and
the following relations hold:

Axg = AgXy
Ax, = Apx, = x,

Ax, — Agx, = x, (1.3.1)

Ax, = Apxy = x4,

The first equation (together with x, > 0) means that x, is an eigenvector of

A corresponding to A,. The vectors x,,...,x, are called generalized

eigenvectors of A correspondmg to the elgenvalue A, and the eigenvector x,,.
For example, let

A, 1T 0
0 A .
A= : : y A € ¢

: 1

0 e 00 A
as in Example 1.1.1. Then e, is an eigenvector of A corresponding to Ao, and
€y, €, ..., ¢, is a Jordan chain. This Jordan chain is by no means unique;
for instance, e, e tae,... e, +ae,  is again a Jordan chain of A,

where a € ¢ is any number.

In Example 1.1.3 the matrix A does not have generalized eigenvectors at
all; that is, every Jordan chain consists of an elgenvector only. Indeed, we
have A = diag[A,, A,,..., A,], where A, ..., A, are distinct complex num-
bers; therefore

det(Al ~ A)= (A=A, )(A—A;)---(A—A,)

So Ay, ..., A, are exactly the eigenvalues of A. It is easily seen that any
elgenvector of A corresponding to A;, is of the form ae, with a nonzero

scalar a. Assuming that there is a J ordan chain ae, , x of A corrcspondmg to
A;,» equations (1.3.1) imply

Ax— A\ x=ae, (1.3.2)
0 0

Write x = L%, Be,, then Ax=L7_ A,Be,, and equality (1.3.2) gives

i3

g Alo)Bxex i (13‘3)



