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PREFACE

This book is for programmers who are interested in mathematics and familiar
with C++. It is for programmers who are tired of reinventing code that acts “kinda-
like” an existing, well-known concept. It is a book for programmers who know that
mathematics is full of well-known and useful concepts and who want to tap into these
concepts and their power. It is a book for programmers who want to pick up existing
code, plug it into their applications, and increase their productivity.

One of the best ways to be more productive is to stop writing code and reuse ex-
isting programs, particularly for well-defined problems that can be, or have been,
solved once and for all. We need libraries of ready-to-run routines.

All of us have written many subroutines in the past. Why not just take all of
those routines and tie them up with a pretty bow and call it a library? If only things
were that easy. Most subroutines are written with too many assumptions and hooks
into their main program. There is a natural tendency to do this. But all those depen-
dencies force us to spend time duplicating their environment or tweaking the code.

Writing general-purpose code is more difficult than writing single-purpose code.
Instead of having the exact details of the main program in front of us, we must try to
anticipate any and all possible clients. Instead of providing only the function and op-
tions required for the specific task at hand, we must provide all relevant operations.

I believe object-oriented (OO) programming makes it easier to write general-
purpose code than in non-OO paradigms. Instead of focusing on some hypothetical cli-
ent and trying to figure out all of its needs, OO focuses on specific objects and asks
what operations make sense for that object. OO is not PP (panacea-programming). But
although OO has been “overhyped” recently, it does encourage a way of thinking about
problems that I believe will be as much a part of future languages as strong data typing
has become. Simply put, OO is a good idea and it helps organize programming.

My goals for this book are to

* provide C++ source code for ready-to-run classes,

* leverage the power of mathematical concepts that have stood the test of time,

* give you some ideas where you might apply these concepts in programming ap-
plications, and

* teach you some interesting mathematics along the way.

Xv
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For those of you who like to know the “why” as well as the “what,” some proofs
are included. But the proofs are clearly marked and can be skipped.

Mid-level Functions

What kinds of routines should be in a programmer’s library? A library should not con-
tain programs for entire applications. Complete applications are usually too specific to
be heavily reused. And the number of distinct applications is far too large for any rea-
sonable library. Complete applications are just too large for inclusion in a library.

Many books have been published with titles like “A Zillion Little Programs for
Your PC.” These books are filled with routines to turn on and off the PC speaker,
switch video display modes, and so on. These routines fill a certain niche, but are usually
not portable to other machines. Primitive functions are needed to write more complex
programs, but they do not provide very much function by themselves. They will ac-
count for only a small percentage of code in your applications. Therefore, they are too
small to greatly increase your productivity because you still have a lot of code to write.

The library routines we’re looking for should be not too small and not too big. A
library should be made up of medium-sized routines in terms of both size and complex-
ity. Library routines should be complex enough that they can completely take over all
processing in one area of an application. And this suggests writing library routines as
objects that know how to maintain themselves.

Unusual Classes

In almost every new programming book—regardless of language—the authors present
the ever-popular stacks and queues. Stacks and queues are good examples to illustrate
the concepts of data hiding, abstraction, and encapsulation. They are small enough that
they can be presented without going through a lot of code, and they are truly useful.
However, I will assume you already have a number of these books and therefore do not
need yet another version.

Instead, I intend to provide other useful data types that are “above” these basic
types, that is, data types that are more complex and provide richer function. These rou-
tines are portable (or nearly so) to any machine with a C++ compiler. Some of the
classes (in particular, the calculator classes) depend on the lists and sets in Borland’s class
library. If you want to compile my classes on a machine without Borland’s classes, you
will need to do some reworking.

This book provides a collection of data types that are out of the ordinary, and are
intermediate in both size and complexity. There are no stacks or queues, and no sorting
routines. All classes are related, in one way or another, to mathematics. This book con-
tains the following classes:

Functions In programming, functions are useful as lookup tables, and for repre-
senting finite state machines.
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Perm Permutations have many uses. Besides being a fundamental abstraction
of one-to-one and onto functions, they can model card games and other
modern puzzles like Rubik’s Cube.

Part Partitions are ideal for representing the concepts of equality and
connection.

Polya This handles unusual types of enumeration problems, like the number of
distinct ways to paint the faces of a cube, or the number of distinct
bracelets.

Calculator These classes make it easy to create calculators for your data types.

Region A region is a mapping between points on a plane, or in a space, and the
integers. The region classes support rectangular, triangular, and trape-
zoidal regions in two dimensions as well as cubical, tetrahedral, pyrami-
dal, and other types of regions in three dimensions.

Xform These are classes for transforming points including translations, trans-
formations by a group, and general linear transformations.

Hexgrid These routines manipulate grids of hexagons, which are commonly used
in simulation and fantasy games.

Enum IO These routines read and write enumerations by name.

Hashing This class combines data into a hash value.

Binomial In addition to computing binomial coefficients, these routines convert
between binary integers and “cogets” (see Chapter 3) in the binomial
numbering system.

C++

All the code in this book is in C++ because C++ is the mostly widely used object-
oriented language today. This book does not cover the basics of the C++ language.
There are many good books on C++; for example, see Stroustrup (1991), Lippman
(1989), and Meyers (1992).

I will not mount a major defense of the merits of object-oriented programming in
C++. If you are reading this book, you probably already agree that C++ is useful,
productive, and just plain fun. I will say that I think it is easier to consider all the oper-
ations a specific object can reasonably support, than to try and imagine all possible re-
quests from some hypothetical client. This gives me greater confidence that my classes
are complete.

Trademarks

All Borland products are trademarks or registered trademarks of Borland International,
Inc. Rubik’s Cube is a trademark of Ideal Toy Corporation.
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