% WILEY WILEY PROFESSIONAL COMPUTING

V/\N

C++ vamH
CLASS LIBRARY

Permutations, Partitions,
Calculators & Gaming

MATH
CLASS
LIBRARY

Ml INCLUDED Scott N. Gerard

C++ Math Class Library

Permutations, Partitions,
Calculators, and Gaming

AT

JOHN WILEY & SONS, INC.
New York Chichester Brisbane Toronto Singapore

Associate Publisher: Katherine Schowalter
' Editor: Diane Cerra
Managing Editor: Frank Grazioli
Editorial Production & Design: Lachina Publishing Services

This text is printed on acid-free paper.
Copyright© 1994 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Designations used by companies to distinguish their products are often claimed as trademarks. In all
instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in Initial
Capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional service. If legal advice or other expert assistance is required, the
services of a competent professional person should be sought. FROM A DECLARATION OF
PRINCIPLES JOINTLY ADOPTED BY A COMMITTEE OF THE AMERICAN BAR ASSOCIATION
AND A COMMITTEE OF PUBLISHERS.

Reproduc’fion or translation of any part of this work beyond that permitted by section 107 or 108 of the
1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests
for permission or further information should be addressed to the Permission Department, John Wiley
& Sons, Inc.

Library of Congress Cataloging-in-Publication Data:

Gerard, Scott N., 1956~

C++ math class library : permutations, partitions, calculators &

gaming / by Scott N. Gerard.
p. cm.

Includes bibliographical references and index.

ISBN 0-471-59243-9 (acid-free)

1. C++ (Computer program language) 2. Mathematics—Data
processing. I Title. IL Title: C plus plus math class library.
QA76.73.C153G47 1994
510 ' .285 ' 5133—dc20 93-29732

CIp

Printed in the United States of America
10987654321

PREFACE

This book is for programmers who are interested in mathematics and familiar
with C++. It is for programmers who are tired of reinventing code that acts “kinda-
like” an existing, well-known concept. It is a book for programmers who know that
mathematics is full of well-known and useful concepts and who want to tap into these
concepts and their power. It is a book for programmers who want to pick up existing
code, plug it into their applications, and increase their productivity.

One of the best ways to be more productive is to stop writing code and reuse ex-
isting programs, particularly for well-defined problems that can be, or have been,
solved once and for all. We need libraries of ready-to-run routines.

All of us have written many subroutines in the past. Why not just take all of
those routines and tie them up with a pretty bow and call it a library? If only things
were that easy. Most subroutines are written with too many assumptions and hooks
into their main program. There is a natural tendency to do this. But all those depen-
dencies force us to spend time duplicating their environment or tweaking the code.

Writing general-purpose code is more difficult than writing single-purpose code.
Instead of having the exact details of the main program in front of us, we must try to
anticipate any and all possible clients. Instead of providing only the function and op-
tions required for the specific task at hand, we must provide all relevant operations.

I believe object-oriented (OO) programming makes it easier to write general-
purpose code than in non-OO paradigms. Instead of focusing on some hypothetical cli-
ent and trying to figure out all of its needs, OO focuses on specific objects and asks
what operations make sense for that object. OO is not PP (panacea-programming). But
although OO has been “overhyped” recently, it does encourage a way of thinking about
problems that I believe will be as much a part of future languages as strong data typing
has become. Simply put, OO is a good idea and it helps organize programming.

My goals for this book are to

* provide C++ source code for ready-to-run classes,

* leverage the power of mathematical concepts that have stood the test of time,

* give you some ideas where you might apply these concepts in programming ap-
plications, and

* teach you some interesting mathematics along the way.

Xv

PREFACE

For those of you who like to know the “why” as well as the “what,” some proofs
are included. But the proofs are clearly marked and can be skipped.

Mid-level Functions

What kinds of routines should be in a programmer’s library? A library should not con-
tain programs for entire applications. Complete applications are usually too specific to
be heavily reused. And the number of distinct applications is far too large for any rea-
sonable library. Complete applications are just too large for inclusion in a library.

Many books have been published with titles like “A Zillion Little Programs for
Your PC.” These books are filled with routines to turn on and off the PC speaker,
switch video display modes, and so on. These routines fill a certain niche, but are usually
not portable to other machines. Primitive functions are needed to write more complex
programs, but they do not provide very much function by themselves. They will ac-
count for only a small percentage of code in your applications. Therefore, they are too
small to greatly increase your productivity because you still have a lot of code to write.

The library routines we’re looking for should be not too small and not too big. A
library should be made up of medium-sized routines in terms of both size and complex-
ity. Library routines should be complex enough that they can completely take over all
processing in one area of an application. And this suggests writing library routines as
objects that know how to maintain themselves.

Unusual Classes

In almost every new programming book—regardless of language—the authors present
the ever-popular stacks and queues. Stacks and queues are good examples to illustrate
the concepts of data hiding, abstraction, and encapsulation. They are small enough that
they can be presented without going through a lot of code, and they are truly useful.
However, I will assume you already have a number of these books and therefore do not
need yet another version.

Instead, I intend to provide other useful data types that are “above” these basic
types, that is, data types that are more complex and provide richer function. These rou-
tines are portable (or nearly so) to any machine with a C++ compiler. Some of the
classes (in particular, the calculator classes) depend on the lists and sets in Borland’s class
library. If you want to compile my classes on a machine without Borland’s classes, you
will need to do some reworking.

This book provides a collection of data types that are out of the ordinary, and are
intermediate in both size and complexity. There are no stacks or queues, and no sorting
routines. All classes are related, in one way or another, to mathematics. This book con-
tains the following classes:

Functions In programming, functions are useful as lookup tables, and for repre-
senting finite state machines.

g

PREFACE xvili

Perm Permutations have many uses. Besides being a fundamental abstraction
of one-to-one and onto functions, they can model card games and other
modern puzzles like Rubik’s Cube.

Part Partitions are ideal for representing the concepts of equality and
connection.

Polya This handles unusual types of enumeration problems, like the number of
distinct ways to paint the faces of a cube, or the number of distinct
bracelets.

Calculator These classes make it easy to create calculators for your data types.

Region A region is a mapping between points on a plane, or in a space, and the
integers. The region classes support rectangular, triangular, and trape-
zoidal regions in two dimensions as well as cubical, tetrahedral, pyrami-
dal, and other types of regions in three dimensions.

Xform These are classes for transforming points including translations, trans-
formations by a group, and general linear transformations.

Hexgrid These routines manipulate grids of hexagons, which are commonly used
in simulation and fantasy games.

Enum IO These routines read and write enumerations by name.

Hashing This class combines data into a hash value.

Binomial In addition to computing binomial coefficients, these routines convert
between binary integers and “cogets” (see Chapter 3) in the binomial
numbering system.

C++

All the code in this book is in C++ because C++ is the mostly widely used object-
oriented language today. This book does not cover the basics of the C++ language.
There are many good books on C++; for example, see Stroustrup (1991), Lippman
(1989), and Meyers (1992).

I will not mount a major defense of the merits of object-oriented programming in
C++. If you are reading this book, you probably already agree that C++ is useful,
productive, and just plain fun. I will say that I think it is easier to consider all the oper-
ations a specific object can reasonably support, than to try and imagine all possible re-
quests from some hypothetical client. This gives me greater confidence that my classes
are complete.

Trademarks

All Borland products are trademarks or registered trademarks of Borland International,
Inc. Rubik’s Cube is a trademark of Ideal Toy Corporation.

Acknowledgments

There are a great many people I want to thank for their help and support of this project.
Nancy Hankins, Dave Borrillo, and Craig Orcutt deserve special thanks. They helped

PREFACE

get me started, checked my results, and kept me going. I’d also like to thank Joe and
Sue Cahill, Joe Collette, Auther Eberiel, Diane Gerard, Paul Gunsch, Charles and
Christian Hankins, Tim Hamel, Jim Herring, Eric Johnson, Steve Knight, Mike
Moore, A. Carolyn Neal, Jeff Palm, Curt Rose, Dave and Karen Scudiero, Abolfaz
Sirjani, Mike Smith, Francine Stenzel, and Tom Turner.

CONTENTS

PREFACE XV

PART ONE introduction 1

1 Getting Started 3
Minimum Requirements 3
Making a Backup Copy 3

Installation 4
Makefile, 4 o User Assistance and Information, 5

2 Conventions and Notations 6
00 Diagrams 6

Coding Conventions 8
Naming Conventions, 8 * Consistency Checks, 8

Related Operators 9
Templates, 10 » Ranking, 11 Virtual Copy Constructors, 12

PART TWO Foundation Modules 15

3 Binomials 17
Binomial Coefficients 17
Binomial lterator 18
Binomial Number System 18
Implementation Comments 19
Possible Improvements 19

vi CONTENTS

SOURCE CODE 20

File Binlter.hpp 20
File Binomial.hpp 22
File Binomial.cop 24

4 compare 26
Common Features of the Comparisons 27
Total Compare 29
Partial Compare 29
Set Compare 30
Compare for Numerical Analysis 31

SOURCE CODE 31
File Bool.hpp 31
File TotalCompare.hpp 32
File TotalCompare.cpp 32
File PartCompare.hpp 33
File PartCompare.cpp 34

5 Utility Classes 35
Uninit Class 35

Ident 35
EnumlO 36
IntMath 37

Greatest Common Divisor, 37 ¢ Least Common Multiple, 37
Square Root, 37

Hashing 37
SimpHasher Class, 38

Handles and Bodies 39

implementation Comments 40
Square Root Algorithm, 40

SOURCE CODE 42
File EnumiO.hpp 42
File EnumlO.cpp 43
File intMath.hpp 44
File IntMath.cpp 45
File Hasher.hpp 46
File Handle.hpp 49
File Handle.cpp 51

CONTENTS vii

PART THREE Games 53

6 Regions 55
P2BOARD 55
Point2 Class 57
Region Class 58
Reg2Rect Class 60
Game Boards 61
RegXform Class 62

Xform Class 62
Xfoldent Class, 63 o XfoXlate Class, 63 o XfoGroup Class, 63
General Linear Transformations, 64

Three-Dimensional Regions 65
Quad Trees and Oct Trees 65
Usage Notes for Games 68

implementation Comments 68
Bounds Checking, 68 e Error Handling, 71 Performance, 71

Possible Extensions 71

SOURCE CODE 73
File Bounds.hpp 73
File Point2.hpp 73
File Point2.cpp 75
File Region.hpp 77
File Region.cop 80
File Reg2Rect.hpp 81
File Reg2Rect.cpp 82
File RegXSplit.hpp 83
File RegXform.hpp 86
File RegXform.cpp 87
File Xform.hpp 89
File XfoGroup.hpp 90
File XfoGroup.cpp 92
File GroupD4.hpp 93
File GroupD4.cpp 94
File XfoGL2.hpp 96
File XfoGL2.cpp 97
File XfoGL2Imp.hpp 98
File XfoGL2Imp.cpp 100
File P2Board.hpp 102
File P2Board.cpp 102

CONTENTS

v

4 Trapezoidal Regions 108

Two-Dimensional Algorithm 108

Rank, 108 e« Number of Cells, 110 o Unrank, 110
Reg2Trap Class 112
Triangle Classes 112
Row-, Column-, and Diagonal-Orders 112
Three-Dimensional Algorithm 113

Number of Cells, 114 o Unrank, 115
Implementation Comments 115

SOURCE CODE 116

File Reg2Trap.hpp 116
File Reg2Trap.cpp 117

8 HexGrid 120
Overview 120

Hexgrid Coordinates 121
Natural Coordinates, 122

HexPoint Class 122

HZBOARD 124
Reg2Hexagon Class, 125 e Reg2Chinese Class, 125
Shortest Path, 125

A Very Simple Game 127

Implementation Comments 127
Shortest Path Proof, 127

SOURCE CODE 128
File HexPoint.hpp 128
File HexPoint.cpp 132
File Reg2Hexagon.hpp 135
File Reg2Hexagon.cpp 138
File HexGame.cpp 139

PART FOUR CalculationModules 141

9 calculator 143

Starting REALCALC 144
Literals, 144 o Variables, 144 + Commands, 144
Expressions, 145 o Comments, 146 o Line Continuation, 146
Interrupting Execution, 146 o Common Commands, 146
REALCALC Specific Commands, 148

CONTENTS

Implementation Comments 148
Real Class, 148 e Identifier, 149 o Scopes, 151 o SetOfList
Class, 152 e Expressions, 153

Writing Your Own Calculator 157
Possible Extensions 158

SOURCE CODE 159
File Calcldent.hpp 159
File Calcldent.cpp 163
File CalcScope.hpp 165
File CalcScope.cpp 169
File RealCalc.cpp 173

1 0 Functions 177
Background 177
Class Overview 179
DSet Class, 179 o Fun Class, 179 o FunGRng Class, 179

FunDRng Class, 180 e AutoFun Class, 180 e Perm Class, 180
Element Class, 181

Function Calculator 182
C ++ Source Code, 183

DSet Class 186
IdentDSet Class, 186 e ShiftDSet Class, 187 ® LinearDSet
Class, 187 o ExpDSet Class, 187 * LogDSet Class, 188
PowerDSet Class, 188

Component Operations 188

FunDRng Class 189

Function Composition 189

AUTOCALC and AutoFun 190

Element Class 193

Implementation Comments 194

Memory Layout, 194 ® Domain and Range Types, 195
Binary Operators, 195

Possible Extensions 196
SOURCE CODE 198
File Function.hpp 198
File FunGRng.hpp 204
File Element.hpp 208
File Element.cpp 209

-

ix

CONTENTS

11 Applications of Function 213

Real Functions 213

Lookup Tables 214

Circuit Simulation 214

Function Composition 215
Macro Functions, 215 e Translation Tables, 216 o Color
Palettes, 216 * Polynomials, 216

Finite State Machines 217

Semigroups 220

Semigroup Representations, 221

12 Permutations 226
Background 226
Input and Output 228

Permutation Calculator, 230
Interpretations 231
Permutations as Data Values, 231 o Permutations as Operators, 232
Other Routines in Class Perm, 233
Implementation Comments 234
Inversions, 234

Possible improvements 234

SOURCE CODE 235
File Perm.hpp 235

13 Permutation Applications 242

Rearranging 242

Randomizing Lists, 242 » Card Games, 242

Change Ringing, 243 « Moving Large Amounts of Data, 244

Round Robin Tournaments, 244 o Group Theory, 246

Symmetries of the Square, 247 ' Symmetries of the Cube, 249

Different Representations, 250 e Rubik’s Cube, 250 o VLSI Design, 253
Possible Improvements 256

SOURCE CODE 256
File GroupD4P.hpp 256
File GroupD4P.cpp 256

14

15

CONTENTS xi

Partitions 260
Partition Calculator 261

Equivalence Relations 261
Related Relations, 263 * Equivalent Equivalences, 263

Matrix Representation 264

C++ Template Classes 266
Constructors, 267 e Assignment, 268 * Partition Literals, 268
Input and Output, 268 e Element Operations, 268 e Partition
Operations, 269 e« No Subtraction or Division, 270
Special Partitions, 270

Comparing Partitions 271
Other Methods, 272

Iterators 273
Partition Laws 273

Implementation 275
General Implementation, 275 e Multiplication Implementation, 276
Proof of Compare, 277 e Ranking, 278 ¢ Random Partitions, 280

Possible Extensions 284

SOURCE CODE 285
File Part.hpp 285

Partition Applications 294

Kinds of Examples 294
Same Attribute, 294 o Step Functions, 295 e Parallel Equivalence, 295

Connection 296
Connected Components of a Graph, 296 e Kruskal’s Spanning
Tree, 297 o Connected Regions of a Game Board, 297
Connected People over Time, 298 o Connected Continents, 298
FORTRAN EQUIVALENCE, 299 e Sets as Partitions, 299
Pin Swapping, 300 e Finite State Machines, 301
Polya’s Example, 308 e Distinct Circuits, 312

SOURCE CODE 315
File Polya.hpp 315
File Polya.cpp 318
File PolyaT.cpp 321

BIBLIOGRAPHY 323
INDEX 325

FIGURES

2.1,
2.2,
2.3.
24,
6.1.
6.2.
6.3.
6.4.
6.5.
7.1,
7.2

8.1.

8.2.
9.1.
9.2
9.3.
9.4.
9.5.
9.6.
9.7.
10.1.
10.2
11.1.
12.1.
13.1.
13.2.

Modified Booch notation for class and object diagrams
Example diagram

Primitive operator += and derived operator +
Primitive operator + and how operator += uses it
Two-dimensional region classes

Three-dimensional and other region classes

A quad tree for finding points in the plane
Two-dimensional boundary checking
Three-dimensional boundary checking

Trapezoidal mapping

General form of the three-dimensional
trapezoidal shape

Hexgrid of hexagons overlaid with a hexgrid
of triangles

Hexgrid with natural coordinates
REALCALC expression objects
Identifier classes

Scope class hierarchy
SetOfList class hierarchy
SetOfList objects

Expression class hierarchy
Grammar for expression classes
Domain set class hierarchy
Function classes

Finite state machine

Premultiply versus postmultiply
Round-robin tournament
Symmetries of the square

7

10
10
58
59
67
69
70
109

114

121
123
145
149
151
153
153
154
155
180
181
218
233
245
248

13.3.
13.4.
14.1,
14.2.
14.3.
14.4.
15.1.
15.2.
15.3.
15.4.
15.5.
15.6.
15.7.
15.8.
15.9.
15.10.

FIGURES

Symmetries of the cube
Rubik's Cube

Partition classes

Partition implementation
Partition ranking

Selecting random partitions
Finite state machine M1

Basic partitions for M1

File mi.fsm

File m1.peq

Hasse diagram of closed partitions
FSM M1min

Benzene ring

Bracelet with five beads (slots)
Distinct bracelets

Pattern of three input bits

Xiii

249
251
266
276
279
282
303
304
305
305
306
307
309
310
313
314

PART ONE

Introduction

