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Preface

Of recent coinage, the term ''nmondifferentiable optimization"
(NDO) covers a spectrum of problems related to finding extremal
values of nondifferentiable functions. Problems of minimizing
nonsmooth functions arise in engineering applications as well
as in mathematics proper. The Chebyshev approximation problem
is an ample illustration of this. Without loss of generality,
we shall consider only minimization problems.

Among nonsmooth minimization problems, minimax problems and
convex problems have been studied extensively ([31], [36], [57],
[110]}, [120]). Interest in NDO has been constantly growing in
recent years (monographs: [30], [81], [127] and articles and
papers: [14], [20]}, [87]-[89], [98], [130], [135], [1l40]-[142],
[152], [153], [160], all dealing with various aspects of non-
smooth optimigation).

For solving an arbitrary minimization problem, it is neces-
sary to:

1. Study properties of the objective function, in particular,
its differentiability and directional differentiability.

2, Establish necessary (and, if possible, sufficient) condi-
tions for a global or local minimum.

3. Find the direction of descent (steepest or, simply,
feasible--in appropriate sense).

4. Construct methods of successive approximation.

In this book, the minimization problems for nonsmooth func-
tions of a finite number of variables are considered. Of fun-
damental importance are necessary conditions for an extremum
(for example, [24], [45], [57]1, [73], [741, [103], [159], [163],
[167], [168].

(xi)
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In the case of smooth functions, the importance of the concept
of a gradient is well known. However, for nonsmooth functions,
gradients do not exist., For a maximum function and a convex func-
tion, the subgradient pldys a role similar to that of the gradient:
with every point xO we associate a compact set af(xo), which is
called the subdifferential of the function £f(x) at the point

Xq+ Using the subdifferential, it is possible to:
1. Find the directional derivative of the function at the point
XO:
Bf(xo) -1
—_— = lim a [f(x0 + ag) ~ f(xo)] = max (v,g) .
g a>+0 anf(xO)

2. Verify necessary conditions for a minimum: for a point x*
to be a minimum point of the function f(x) on En, it is

necessary that
0O e df(x*) .

3. Find the direction of steepest descent: if O ¢ Bf(xo),
then the direction

8(xy) = -v(xy) IIV(XO>H_1 ,

where Hv(xo)u = min |v “, v(x,) < 3f(x,), is the direction
VEBf(XO)

of steepest descent of the function f(x) at the point Xye

Such an important role of the subdifferential has prompted an
attempt to extend the concept of a subdifferential to Lipschitzian
functions: F.H. Clarke [133], [134]1; J. Warga [9], [168]; B.H.
Pshenichnyj [104]; N.Z. Shor [126], [127]; A. Gol'dshtejn [139],
[140], among others.

Using subdifferentials and subgradients, it is possible to con-
struct several methods of successive approximation for minimizing
convex functions, maximum functions, as well as other classes of
functions ([30], [36]1, [91], [127], [l149]-[151]1, [156], [170],
(1711).

The problem of minimizing a smooth function f(x) on the set

2 ={xeE |h;x) <0 ¥iel:N} ,
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where hi(x) is a smooth function on En’ is in fact a problem
of NDO, because the set & can be represented as follows:
9 = {x<E |[h(x) <0},
where h(x) = max h.(x) 1is no longer a smooth function.
iel:N

The objective of this book is a systematic exposition of the
theory of optimization of nondifferentiable functions. In Chapter
1, the basic results from the theory of convex functions, convex
sets, and point-to-set mappings are introduced. Much attention is
paid to e-subdifferentials and properties of e-subdifferential
mappings. Convex functions are essential not only because they
constitute a large class of nonsmooth functions, but also because
the tools of the theory of convex functions can be extended to
more general classes of nonsmooth functions.

This concept of a convex function and of a maximum function is
tied in with that of a directional derivative. Quite a few
authors, among those cited above, do not use directional deriva-
tives in their generalizations of the subdifferential. However,
in optimization problems, the directional derivative is more
natural, as well as more useful.

In Chapter 2, a new class of nondifferentiable functions, that
is, the class of quasidifferentiable functions, is described. For
such functions the concept of a quasidifferential, which is closely
related to that of a directional derivative, plays a significant
role. It appears that for each point there exists a pair of con-
vex sets (quasidifferential). The quasidifferential is a genera-
lization of the concept of a derivative (for smooth functions) and
of a subdifferential (for convex functions).

The notion of quasidifferentials simplifies considerably the
statement of necessary conditions for an extremum and the problem
of finding the directions of steepest descent and ascent. The
principal formulas of quasidifferential calculus, which is indeed
a generalization of the classical quasidifferential calculus, are
established next. The class of quasidifferentiable functions is
a linear space closed with respect to all "differentiable'" opera-
tions as well as operations of taking pointwise maxima and minima
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(while the class of convex functions is not a linear space but a
convex cone). The concept of quasidifferentiable sets is a natural
extension. A necessary condition for an extremum of a quasidiif-
ferentiable function on a quasidifferentiable set is established

in terms of quasidifferentials, which essentially extends the class
of problems which can be investigated analytically. For a large
class of quasidifferentiable functions, it is possible to algo-
rithmize the process of verifying necessary conditions, as well as
the process of finding steepest descent or ascent directions.
However, numerical techniques still need to be developed.

Chapters 3 and 4 are devoted to numerical methods for solving
NDO problems, including minimization of convex functions and maxi-
mum functions. Successive approximation methods are classified as
relaxation and non-relaxation methods. A method is called the re-
laxation method if the value of a function at each step is smaller
than that at the preceding step. We discuss both classes of meth-
ods, but not the advantages of one versus the other, because the
"dragon" of optimization is multiheaded and it takes a special
sword to cut-off each head. Thus, the method of subgradient des-
cent is simple to instrument but converges very slowly. Many meth-
ods depend on the aims and available means. Sometimes, it is pos-
sible to make a rough but quick approximation; in other cases,
high accuracy may be needed and computational complexity is not
a problem.

Most of these methods are "first-order'" methods, since the first-
order approximations (derivative, subgradient, subdifferential)
are used. One might expect that a further development of the NDO
theory will involve higher-order methods.

Some material is relegated to exercises, We do not consider
stochastic procedures ([51], [83], [107], [117]); nor problems of
game theory ([21], [58], [63], [64]) and those of multicriteria
optimization ([195]), where NDO is needed.

Included in this book are the results of recent research in
nonsmooth optimization, obtained at the Department of Applied Ma-
thematics/Control Processes and at the Institute of Computational

Mathematics of Leningrad State University.
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Some results were reported at the Seventh and Eighth All-Union
Summer Schools on Optimization at Shchukino (1977) and Shushenskoe
(1979).

The authors are indebted to N.N. Moiseev for his encouragement
and support throughout; and to A.B. Pevnyj and A.M. Rubinov for
a careful reading of the manuscipt and constructive suggestions.
Thanks are also due to E.F, Vojton, M.K. Gavurin, Yu.M. Ermol'ev,
S.S. Kukateladze, V.N. Malozemov, B.N. Pshenichnyj, and V.M. Tikho-~
mirov for their many helpful comments for improving the exposition.,



Notation

inf (f(x) | xeA} is shortened to in£ f(x).
Xe

Q = {VEEn | 3ay>0: x0+uVeAVa€[O,uO]}

is interpreted as follows: Q is a set of points
v sEn, for which there exists an o >0 such that

XO+OLVEA for all ae[O,ao].

The set of integers from p to q is denoted by p:q.
The lower and upper limits are denoted by 1lim and

Tim, respectively,

The number of elements of a set A is denoted by [A].
The symbol = dimplies "equal by definition."

The symbol = indicates the end of a proof,.

Material which is used in the sequel is delineated by

an asterisk.

(xvii)
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Chapter 1

FUNDAMENTALS OF CONVEX ANALYSIS
AND RELATED PROBLEMS

1. CONVEX SETS. CONVEX HULLS. SEPARATION THEOREM

1. In what follows we shall consider the n-dimensional Eucli-
dean space En of vectors x = (x(l),...,x(n)). The space En is

assumed to be linear. Let us introduce some notation:

On = 0 = (0, ,0) e En ,
S T oI
n .
(rpoxp) = [ oxgPgt
i=1
x|l = /x,x) ,
x2 = (x,X)

The Cauchy-Buniakowski inequality
l(xlxxz)l < ”X1|] ”Xz”
is valid for all vectors x.,%X, € E_.
1’72 n
The vectors x4,...,%x. are said to be linearly independent if
T
the equality kglakxk = O implies that all coefficients O s

kel:r are equal to zero.

If r=n+l, then the vectors Xy,.-.X, are linearly dependent,
. . r
i.e., there exist scalars 81,...,8 such that )X 82 >0 (i.e.
r k=1 kK !

(1)
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the Bk are not all equal to zero) and

T
L B.x 0 (1.1)
ki1 Kk

If r 2 n+2, then we have the equality

I8, =0 (1.2)

in addition to (1.1).
To prove this, we introduce the vectors

% = (1, =1, xf{“)) < E kKel:r, 1T2n+2.

k

*

n+l ?’
Since any n+2 vectors in En+1 are linearly dependent, there
r
exist scalars Bk such that = Bi > 0 and
k=1
i‘ -
B, x = 0 . (1.3)
k=1 k7k n+1l
It follows from (1.3) that

r
BiX, = O, , ;Z_

r
ks
(here we have set the first component and each of the n remaining
components equal to zero).

The set which contains no elements is said to be empty and is
denoted by @.

Let

Sg(xg) = {xeE | [lx-x4] s8} , 8§ >0

The set SS(XO) is said to be a §-neighborhood of the point

X A point X, is said to be an <nterior point of a set G if

0’ 0
there exists a 6§ >0 such that S(S(XO) cG. We shall denote the set
of interior points of a set G by intG (this set may be empty).

A set G cEn is said to be open if for any Xg there exists a
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§ >0 such that SG(XO) c G, It is obvious that G = int G for any

open set G.

A set of points x which may be represented in the form

x = lim %, , where x,e€ G VYkel:e», 1is said to be the closure of a
ko k k

set GcE . We shall denote the closure of a set G by G.

0
relation X, ——>x,, X, <G Yk el:», It is obvious that G = G
koo

A set GCEn is said to be closed if x,eG follows from the
0
for any closed set G.

A point X, is said to be a boundary point of a set GCEn if,
for any 6 >0, its d&-neighborhood SS(XO) includes at least one
point which does not belong to G and at least one point which does
belong to G (here Xy may not belong to G). We shall denote the
set of boundary points of a set G by Gfr'

A set G 1is said to be bounded if there exists a real number
K <+» such that |/x]] <K VYxeG.

A set G 1is said to be unbounded if for any K >0 there exists
an xeG such that ||x]| >K.

It is obvious that the union, intersection, sum and difference
of two bounded sets are again bounded sets.

The intersection of two sets of which at least one is bounded
is a bounded set.

If A and B are closed sets, then their union and intersec-
tion are again closed sets. However, this property no longer holds
for the sum, difference and algebraic difference.

EXAMPIE 1. Let
A = {x=(x(1),x(2))eE2 ] x(2), _1 , x<1)>0} ,

B = {X=(X(1)’X(2))EE2 | x(1) = 0, <(2) < 0}
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It is obvious that the sets A and B are closed but not
bounded.

The set

c = a+B = {x=xD) x(2)y 1 xD) 5o, x(2) ¢ (Lo @)}

is not closed because we have
¢ o= ix=xP x| xW o, B e (w0 2 C .

However, if the sets A and B are closed and at least one of
them is bounded, then their sum (and algebraic difference) is also
closed.

A set which has the property that, for every sequence con-
structed from its elements, we can select a convergent subsequence
the limit of which belongs to the original set is said to be
compact. It is well known that a set in En is compact iff it is
closed and bounded,

DEFINITION 1. A set @ CEn is said to be convex if, in addition
to two arbitrary points Xq,%Xg e, the set contains the line seg-

ment connecting these points, i.e., [xl,xz] <, where
[xl,xz] = {x <E | x= axy + (1-a)x,, o< [0,1]}

A convex set Q 1is said to be strictly convexr if for any
Xq,%g eQ, xlf X5, and any a«(0,1) we have
X, = ax1-+(1—a)x2 e int Q,

There exists another definition of a convex set.

DEFINITION 1*, A set @ cEn is said to be convex if, in addition

to two arbitrary points Xq,%g, the set includes the point %(xfx2),
i.e., if, for any Xy, Xg =, the center point of the line segment

connecting the points Xy, X%q also belongs to Q.



