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Introduction

A linear algebraic group over an algebraically closed field k is a subgroup
of a group GL,(k) of invertible n x n-matrices with entries in k, whose elements
are precisely the solutions of a set of polynomial equations in the matrix coordi-
nates. The present article contains a review of the theory of linear algebraic
groups.

To develop the theory one needs tools from algebraic geometry. The reader
is assumed to have some familiarity with that subject.

Chapter 1 of the article reviews the basic facts from the theory of linear
algebraic groups over an algebraically closed field k. This theory culminates in
a classification of simple linear algebraic groups. I have tried to explain carefully
the fundamental notions and results, to illustrate them with concrete examples,
and to give some idea of the methods of proof.

There are several monographs about the material of this chapter ([B2], [Hu],
[Sp3]), where the interested reader can find more details about this material.

Chapter 2 discusses the relative theory, where a field of definition comes
into play. This is, roughly, a subfield F of k such that the polynomial equations
of the first line can be taken to have coefficients in F. This relative theory is
required, for example, if one wishes to deal with arithmetical questions involv-
ing algebraic groups.

At the moment there do not exist monographs covering this theory, which
makes it less accesible. I have tried to present a coherent picture, following the
same lines as in Chapter 1.

In Chapter 3 special features are discussed of the relative theory, for particu-
lar fields of definition F, notably finite, local and global fields. The aim of the
chapter is to show how the theory of algebraic groups is used in questions about
such special fields.

There is a great abundance of material. Because of limitations of space I
have sometimes been quite sketchy.!

The references at the end of the article do not have the pretension of being
complete. But I hope that with the help of them a reader will be able to trace in
the literature further details, of he wishes to do so.

A reference in the article to I, 2.3.4 (resp. 2.3.4) refers to no. 2.3.4 of Chapter
1 (resp. of the same Chapter).

Historical Comments

By way of introduction to the subject of linear algebraic groups there follows
a brief review of anterior developments which have been incorporated, in some
»

! This article was written in 1988. Today (in 1993) [ would perhaps have written some parts differently.
But I have not tried to rewrite the article. I only made some necessary adjustments.
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way or another, in the theory of linear algebraic groups, or which have influ-
enced that theory.

First there is the study of concrete linear groups. Galois already introduced
the group PGL,(IF,) of fractional invertible linear maps (z— (az + b)/(cz + ™
of the prime field IF,. An extensive study of the general linear groups over such
a field (in any dimension) and related “classical” groups (like orthogonal ones)
was made by C. Jordan in 1870 (in his book “Traité des substitutions”). This was
continued by L.E. Dickson around 1910 and by J. Diedonné around 1950.
These authors study group-theoretical questions, such as the determination of
all normal subgroups, for classical groups.

A landmark in this development is C. Chevalley’s paper “Sur certains
groupes simples” (T6hoku Math. J., 1955, 14-66), in which Lie theory makes its
appearance. He constructs, for any simple Lie algebra over the complex field,
a corresponding linear group over any field F and he discusses their group-
theoretical properties. The standard classical groups are special cases.

Incidentally, Jordan’s book - mentioned above — contains a version of
Jordan’s normal form of matrices. The Jordan decomposition in linear algebraic
groups (see I, 3.1) is a descendant.

Linear algebraic groups over the field of complex numbers appear in E.
Picard’s work on Galois theory of linear differential equations (around 1885, see
his paper “Equations différentielles linéaires et les groupes algébriques de trans-
formations”, Oeuvres II, 117-131). An example of the questions studied by him
is the following. Consider an n™ order homogeneous linear differential equation
in the complex plane

d"f dn-lf
i @ g

with polynomial coefficients a;. One knows that the everywhere holomorphic
solutions form an n-dimensional complex vector space, let (f,, ..., f,) be a basis.
Let L be the subfield of the field of meromorphic functions obtained by adjoin-
ing to the field €(z) of rational functions the f; and all their derivatives. Denote
by G the group of C(z)-linear automorphisms of L which commute with deriva-
tion. This is the Galois group of the equation. Picard’s aim is to develop a
Galois theory. If g € G there exist complex numbers (x;;(g}) such that

+ 4 an(2)f =0,

g.fi= Zl xji(g)fj
=
and Picard shows that the matrices (x;;(g9)) € GL,(C) form a linear algebraic
group over C, isomorphic to G. He seems to be the first to use a name like
“algebraic group”.

This Galois theory was later algebraized and further developed by Ritt
(around 1930) and Kolchin. The work of the latter of 1948 (see his paper “On
certain concepts in the theory of algebraic matric groups”, Ann. of Math. 49,
771-789) contains results which are now basic ones in the theory of linear
algebraic groups, such as the properties of the identity component (I, 2.2.2) and
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the Lie-Kolchin theorem (I, 3.4.1) which states that a connected solvable linear
algebraic group can be triangulized. This extends a result of Lie for complex
solvable Lie algebras. In contrast to the latter result, the Lie-Kolchin theorem is
true in any characteristic.

A. Weil’'s work on Jacobians of algebraic curves (see his book “Variétés
abéliennes et courbes algébriques”, 1948) led him to a study of general algebraic
groups, i.e. algebraic varieties with a group structure given by morphisms in the
sense of algebraic geometry. His interest was primarily in abelian varieties, i.e.
connected algebraic groups which are projective varieties (in which the group
structure is automatically commutative). Classically, abelian varieties over €
were studied by transcendental methods which go back to Riemann.

Weil (and others) established somewhat later basic general facts about quo-
tients of an arbitrary algebraic group by an algebraic subgroup. They are indis-
pensable ingredients for the theory of linear algebraic groups.

The theory of linear algebraic groups was founded by A. Borel in 1956
(“Groupes linéaires algébriques”, Ann. of Math. 64, 20-82). His work was com-
pleted by Chevalley (“Classification des groupes de Lie algébriques”, Séminaire
Ecole Normale Supérieure, 1956-1958). In Borel's work the influence of
Kolchin’s work, alluded to above, is clearly visible. Another essential element is
the analogy with the theory of Lie groups, in its “global” form. An infinitesimal
approach to linear algebraic groups via Lie algebras is unsuitable in characteris-
ticp > 0.

Using the global methods of algebraic geometry, Borel established basic
results, such as conjugacy theorems for maximal tori and Borel subgroups
(1, 3.5.3,1. 3.5.1). To obtain these he proves a fixed point theorem (I, 3.4.3), which
generalizes the Lie-Kolchin theorem, mentioned before. Chevalley showed that
analogues of results established in Lie theory with the help of the Lie algebra
can be obtained with global methods (for example results about radicals, see L
4.2.6). The main result of his Séminaire is that the classification of simple linear
algebraic groups over an algebraically closed field of any characteristic, is com-
pletely analogous to the classification of simple Li¢ algebras over the field of
complex numbers.

In the work of Borel and Chevaliey the influence of ideas and results from the
theory of Lie groups has been considerable. Grosso modo, Chapter I of the
article is a review of the work of Borel and Chevalley.

Finally, mention should be made of some generalizations of algebraic groups,
which we have not — or hardly — touched upon. First there are the group schemes,
studied extensively by Grothendieck and his collaborators (M. Demazure and
A. Grothendieck, Schémas en groupes, Lect. Notes in Math. nos. 151, 152, 153,
1970). In this article they appear in only a few places. More recent generalizations
are the quantum groups, which are algebraic groups in “non-commutative ge-
ometry”. We have only given the definition (in 2.1.6). We have not said anything
about “infinite dimensional” algebraic groups, such as Kac-Moody groups.
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Chapter 1

Linear Algebraic Groups over an Algebraically
Closed Field

§ 1. Recollections from Algebraic Geometry

Some familiarity with algebraic geometry is assumed. We shall recall a num-
ber of basic notions and results. For more details see [H], [Mu] or [Sp3].

1.1. Affine Varieties. Let k be an algebraically closed field. An affine alge-
braic variety X over k is determined by its algebra of regular functions k[X], a
k-algebra of finite type, which is reduced i.e. without non-zero nilpotent elements.
Such k-algebras are called affine. X is the set of k-algebra homomorphisms
k[X] - k. For each ideal I of k[X], let ¥'(I) be the set of x € X such that
x(I) = 0. The sets ¥ (I) are the closed sets for a topology on X, the Zariski
topology.

The elements of k[ X] define k-valued functions on X, the regular functions.

The affine variety defined by the polynomial algebra k[T, ..., T,] is affine
n-space A", also denoted k".

1.2. Morphisms

1.2.1. If X and Y are affine varieties, a homomorphism of k-algebras ¢*:
k[X] — k[ Y] defines a map ¢: Y — X, which is continuous. Such maps are the
morphisms of affine k-varieties. )

1.2.2. A closed subset Y of the affine variety X has a canonical structure of
affine variety, with algebra k[ Y] = k[X]/I, where I is the ideal of functions
vanishing on Y. Such a variety is a closed subvariety of X. The corresponding
morphism is a closed immersion.

1.2.3. Nextlet f € k[X] — {0} and take k[ Y] = k[X], = k[XI[TI(1 - fT),
a localization of k[ X], with ¢* the canonical homomorphism. Then Y can be
viewed as the open subset D(f) = {x € X |f(x) # 0} of X. Such a set D(f), pro-
vided with the k-algebra k[ X1, is an affine variety. Any open subset of Xisa
union of finitely many open sets of the form D(f).

Example. Let X = IM, (k), the space of n x n-matrices with entries in k,
which is isomorphic to A™. Let d(X) = det(X) be the determinant function. The
open set X, is the set of all invertible n x n-matrices.

1.24. If X and Y are affine varieties, there exists a product variety X x Y,
with k[X x Y] =k[X] ®, k[Y].

1.2.5. Affine algebraic varieties and their morphisms make up a category,
which is the opposite of the category of affine k-algebras.
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1.3. Some Topological Properties. Let X be an affine variety. It has the noe-
therian property: any family of closed subsets contains a minimal element (for
inclusion).

X is reducible if it is a union of two non-empty proper closed subsets. Other-
wise X is irreducible. Irreducibility is equivalent to: a non-empty open subset of
X is dense.

Also, X is irreducible if and only if the algebra k[ X] is an integral domain.
In that case the quotient field of k[ X] is denoted by k(X). Its transcendence
degree over k is the dimension dim X of X.

Any affine variety is the union of finitely many irreducible closed subsets, its
irreducible components, which are unique.

1.4. Tangent Spaces. If x is a point of the affine variety X, the homomor-
phism x: k[ X] — k defines a k[ X]-module k, with underlying vector space k.
The tangent space T X of X at x is the k-vector space of k-derivations of k[ X]
in k,, i.e. linear maps D: k[ X] — k such that D(fg) = f(x)(Dg) + (Df)g(x). If M,
is the maximal ideal Ker x of k[X] then T_X is isomorphic to the dual of
M. /(M,)?. A morphism ¢: Y — X defines a map of tangent spaces (do),: TY »
T, X, the differential of at y.

If X is irreducible then x € X is smooth (or simple, or non-singular) if
dim T, X = dim X. The smooth points of X form a non-empty open subset. We
say that X is smooth if all its points are smooth.

1.5. Properties of Morphisms

1.5.1. Let X and Y be irreducible affine varieties and ¢: Y — X a morphism.
It 1s said to be dominant if @Y is dense in X. In that case @Y contains a non-
empty open subset of X.

1.5.2. If ¢ is dominant the defining homomorphism @*: k[ X] — k[ Y] is injec-
tive. Then ¢ is separable if the field k(Y) is a separable extension of *k(X). This
is so if and only if there exists a simple point y € Y such that ¢y is simple and
that (do),: T,Y - T, X is surjective. The set of such points of Y is open.

1.5.3. If ¢ is dominant there is a non-empty open subset U of Y such that the
restriction of ¢ to U is an open map (ie. the image of an open set is open).
Moreover, U can be chosen such that for any closed irreducible subvariety X’
of X and any irreducible component Y’ of ¢ "1 X’ such that Y’ A U # (J we have
dim Y’ — dim X' = dim Y — dim X.

1.5.4. If ¢ is dominant and if for some y € Y the fiber ¢ "!(gy) is finite then
dim Y = dim X.
1.6. Non-Affine Varieties

1.6.1. Let X be an affine variety and U an open subset. A k-valued function f
on U is regular if for any x € U there is an open neighborhood D(g) of x in U
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such that the restriction of f to D(g) lies in k[D(g)] (see 1.2.3). Let Ox(U) be the
k-algebra of these functions. We say that U is an affine open subset if Ox(U) is
an affine k-algebra, whose homomorphisms in k are precisely the evaluation
maps f— f(x) for xe U.

The intersection of two affine open subsets U, V is also affine open. We have
k[U A V] = k[U] @ux kLV].

The 04x(U) for U open in X define a sheaf 0y of k-algebras on X, which
defines a ringed space (X, Oy).

1.6.2. A ringed space (X, Ux) is called an algebraic variety (non necessarily
affine) if X has a finite covering by open subsets (X;),.; such that (a) for each i the
restriction ringed space (X;, Ox|y,) is isomorphic to one of the kind described in
1.6.1, (b) for each pair (i, j) the intersection X; N X; is an affine open subset of X,
for the structure of (a) and the k-algebra Ox(X; N X ;) is generated by Ux(X;) and
Cx(X))

Morphisms of algebraic varieties are defined in an obvious way. The notions
and results reviewed above for affine varieties carry over, as far as this makes sense.

We have the notions of open resp. closed subvariety of an algebraic variety
X. A locally closed subvariety of X is an open subvariety of a closed subvariety
of X.

1.6.3. Example. Projective n-space IP". Here the underlying set X is the set of
all lines in k"*'. Let X, be the set of those lines which have a basis vector
(X1s .-+, Xic1> 1, Xi415 - --» X,). Then X; can be given a structure of affine algebraic
variety isomorphic to A" These structures can be glued together to give a
structure of algebraic variety on X. If V is a finite dimensional vector space over
k the set of lines in V has a structure of projective variety P(V), isomorphic to
P, wheren + 1 = dim V.

A projective variety is one which is isomorphic to a closed subvariety of some
IP". A quasi-projective variety is an open subvariety of a projective variety.

Projective n-space can also be defined as the set of homomorphisms of
k[Ty, T, ..., T,] to k[T] which are homogeneous for the standard gradings,
closed sets being those sets of homomorphisms which annihilate homogeneous
ideals in the first algebra.

1.6.4. A variety X is complete if it has the following property: for any variety
Y the projection map X x Y — Y is closed. Projective varieties are complete.
Affine varieties with infinitely many points are not complete.

§2. Linear Algebraic Groups, Basic Definitions and Properties

2.1. The Definition of a Linear Algebraic Group

2.1.1. The most direct definition of the notion of a linear algebraic group —
which however is non-intrinsic — is as follows. For each integer n > 1 the group
GL, of non-singular n x n-matrices is an affine algebraic variety (1.2.3).
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Definition. A linear algebraic group G over k is a subgroup of some GL,
which is a closed subset of GL,.

2.1.2. Examples of Linear Algebraic Groups

(a) GL,. According to 1.2.3 we have k[GL,1=k[T;;, d '], where d =det(T})),
the T;; being matrix variables. GL, is a general linear group.

We write GL, = G,,. This is the multiplicative group, also written k*. We have
k[G,) = k[T, T™'], the algebra of Laurent polynomials over k.

We write SL, = {X € GL,|d(X) = 1}, this is the special linear group. We have
k[SL,} = k[GL,1/d — 1) = k[T;}/d — 1).

(b) The subgroup of SL, consisting of the matrices

(63

with x € k is the additive group G,, also written k. We have k[G,] = k[T].
(c) Let SeGL,. The X e GL, with XS(‘X) =S form a linear algebraic
group. Instances are the various classical groups:

(i) If n =2mis even and
0 1
S = m
<_1m O)

we obtain the symplectic group Sp,.
(ii) If char(k) # 2 and S = 1, then G is the orthogonal group. The special
orthogonal group is the intersection with SL,, it is a normal subgroup of index 2.
We shall prefer to use another description of the orthogonal groups. If
n = 2m is even we denote by O, the group defined above, with

-(1, )

and if n = 2m + 1 is odd we denote by O, the group obtained from

0 1, 0
S=11, 0 0
0 0 1

Then O, is conjugate in GL, with the orthogonal group defined first. We write
SO, =0, SL,.
(i1i) If char(k) = 2 orthogonal groups are defined in another way. If n = 2m is

even put
0 1
T= g
oy

and define O, to be the subgroup of GL, consisting of the matrices X such that
XT('X)+ X is skew, i.e. symmetric with diagonal elements zero. This is again
an algebraic group. If n = 2m + 1 is odd the definition is similar, replacing T by
a larger matrix, as before.
(d) The group of diagonal matrices in GL, (resp. upper triangular matrices, resp.
upper triangular matrices with diagonal elements one) is a linear algebraic group.
(e) Any finite subgroup of GL, is a linear algebraic group.



