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FOREWORD

Fracture mechanics provides an important tool for the study of the influence of
sharp flows, such as cracks in a structure on its mechanical performance under external
loading. The sharp flows result in complicated stress and displacement fields even
when the structure is made of a linear elastic material.

The situation is further complicated by non-linear and time-dependent response of
the material. Although linear elastic fracture mechanics is now well endowed with
several quality textbooks, viscoelastic fracture mechanics is not so fortunate. [ am not
aware of more than a handful of books on this topic in English and Russian languages.

Professor Zhang Chunyuan’s contribution to the field of viscoelastic fracture
mechanics is therefore timely and most welcome. I understand it is the first book of its
kind in Chinese.

From the list of contents of the book, which Professor Zhang translated into
English for my benefit, I see that it is going to be a self-contained treatise on the
subject of linear, non-linear and thermoviscoelastic fracture mechanics. Professor
Zhang is eminently qualified to write such a treatise, and I have not doubt that it will
prove popular with the Chinese student and research community.

I shall eagerly look forward to the appearance of an English and/or Russian
language translation of the book.

&

Professor B L Karihaloo

School of Civil and Mining Engineering
The University of Sydney

Sydney, January 1992



PREFACE

The emergence and development of Viscoelastic Fracture Mechanics are closely
related with the wide application of new viscoelastic materials and the employment of
a variety of materials in extreme conditions, such as high temperature, high stress level,
etc. People find that a serious event of fracture usually occurs not immediately after the
load application, but suddenly occurs under the application of the load after undergoing
a period of time. We call this type of fracture as delayed fracture. A crack of buttressed
concrete dam may occur with delayed instability. A vane of turbine may be suddenly
fractured under high temperature after running a period of time. Delayed fracture is as
danger as fatigue and usually is very difficult to prevent. Neither elastic nor
elastic-plastic fracture mechanics can treat such kind of fracture problems that
involving time-effects. Many engineering materials, such as polymers, composites,
non-ferrous metals, rocks, concrete and so on, exhibit noticeable time-effect, this
compel us to use new rheological models when we research crack problems. Most
metals behave as linear elastic bodies at room temperature and in infinitesimal cases.
Nevertheless, the vibration of a metal reed will still quickly attenuate in vacuum. This
shows that there is viscous resistance in the internal of the material. The phenomenon
that the strain increases with time under a constant load is referred to as creep. The
phenomenon that the stress decreases with time under a constant strain is referred to as
relaxation. The phenomenon, that the increasing curve does not coincide with the
decreasing one but above it in a stress-strain diagram, is referred to as elastic hysteresis.
The loop thus formed is called hysteresis loop. Actual materials exhibit the phenomena
of creep, relaxation and hysteresis to a certain extent. Such materials that possess
viscous and elastic properties simultaneously are called viscoelastic materials. The
constitutive equation of viscoelastic body is no longer an algebraic equation for which
the strain is proportional to the stress, but a differential or an integral equation that
involves a time variable. In non-isothermal cases, the constitutive equation will involve
also the heat flux, entropy and free energy, etc.

Viscoelastic Fracture Mechanics is a newly rising course that lies among
viscoelasticity, fracture mechanics, rational continuum mechanics and irreversible
thermodynamics. It applies the viscoelastic constitutive equations to research the
initiation, propagation and rest laws of cracks. It provides the theoretical basis of the
strength analysis of the machines and structures and provides the scientific basis for
predict the service-life of the engineering components.

The author had given a lecture on “Viscoelasticity and Viscoelastic Fracture
Mechanics” for “The National Symposium on Basic Theory of Rheological
Mechanics™ in 1983. The notes of this lecture had used in Xijangtan University as a
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textbook for postgraduate students who have the specialities of Rheology, Solid
Mechanics and Metal Materials for many terms. This book is the revision, the
modification and the development of those notes.

This book includes two parts, namely Viscoelasticity and Viscoelastic Fracture
Mechanics. It is divided into seven chapters. Chapters 1, 2, 4 and 6, and Section 7.8 to
7.10 deal with the basic theory of viscoelasticity, which includes linear viscoelasticity,
non-linear viscoelasticity and thermo-viscoelasticity. Chapters 3, 5 and 7 deal with
linear viscoelastic fracture mechanics, viscoelastic fracture mechanics that taking into
account the non-linear effects in the failure zone at the crack-tip and non-linear
thermoviscoelastic fracture mechanics. Many of the contents are the summation of the
basic theory established in a long period when I was researching the crack instability
problem of Zhexi diamond-head buttressed concrete dam in Hunan Province of China.

When writing this book, I made every effort to explain the abstract mathematical
ideas in clear physical languages and to express theoretical results in a form that is
convenient for engineering application. I also made every effort to describe the
contents in a way that I explain the profound conceptions in a simple way, proceed in
an orderly way and step by step, deduce rigorously and indicate the source clearly. For
reading convenience, an introduction to related modern mathematical and mechanical
bases is included in the Appendices. Examples and exercises are also included in the
end of every chapter. This book can be used as a textbook for senior graduate or
postgraduate students. It also can be used as a reference book for research workers,
engineers and teachers of colleges and universities on related specialities.

This book was supported by the foundation of Hunan Education Committee, the
foundation of Xiangtan University and Key Science of Mechanics in Xiangtan
University. I am indebted to many authors whose writings are classics in this field. To
Christenson, Eringen, Fliigge, Kaminskii, Rabotnov, Schapery, Williams, Wnuk,
Griffith, Knauss, Nuismer, Liebowitz, Eftis, Coleman, Graham, Guo Zhongheng and
many others, I am especially indebted. I own so much to so many of my colleagues,
friends, and students. To Prof. Karihaloo, whom I work with when I visited the
University of Sydney, I am grateful for his discussions, comments and gentle
encouragement, I gratefully acknowledge Academician Sun Jun, Prof. Liu Shuyi, Prof.
Yang Tingging, Prof. Lee Hao, Prof. Zhou Yichun, Prof. Zhang Ping, Prof. Shen Wei
and many others for their comments and helps. [ also wish to thank many of my
students, without their discussions the book would not have taken this form. Finally, [
am extremely grateful to my wife, Prof. Ning Yaqin and my parents for their
encouragements, discussions and helps.

Zhang Chunyuan
Xiangtan, Hunan
February 27, 2004
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1. CONSTITUTIVE EQUATIONS FOR
VISCOELASTIC BODIES

Notations
d . .
D= P! differential operator  j(7), L(log 1) creep spectrum
. de .
e -(; g(1), H(log 7) relaxation spectrum
ou,
uj BT G relaxation modulus
J
) stress deviator J(@) creep compliance
strain deviator E(), G, (¢), G, (1) uniaxial, shear, bulk relaxation
modulus
n coefficient of viscosity D(f), J; (¢), Jo(f) uniaxial, shear, bulk creep,
compliance
T mean relaxation time,  yA?), yi(r), yo(f) uniaxial, shear, bulk relaxation
kernel
T mean retardation time  a(7) shift function
T relaxation time D), ¢i(D), ¢(r)  uniaxial, shear, bulk creep kernel
T retardation time

1.1 Introduction

This Chapter deals with the constitutive equation of a special kind of material,
viscoelastic bodies. Constitutive equation is an equation that describes the special
property of a material. By means of which, we can distinguish one material from the
others. It describes the relationship among stress, rate of stress, strain and rate of strain,
etc. Generally, it still involves thermodynamic variables, such as temperature, entropy,
etc. Nevertheless, this Chapter deals only with isothermal constitutive equations of
linear viscoelastic bodies. Because of the complex nature of a true material,
mathematical abstraction can only reflect some main properties in a certain extent.
Thus, any constitutive equation can only define an “idealized material” . Properly
select idealized material can obtain a good approximation of a true material. In this
Chapter, we do not decide to discuss constitutive equations from the basic axiom like
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rheology, but focus our attention on viscoelastic bodies. We give emphasis to introduce
constitutive equations of differential type from model theories, and to introduce
constitutive equations of integral type. Since the difference of governing equations between
viscoelastic bodies and elastic bodies lies in the constitutive equation, the key step to solve
viscoelastic problem is to research the constitutive equation. Although the constitutive
equation of viscoelastic bodies and elastic bodies is not the same, the analogy between
them is apparent. This analogy is just the basis for solving viscoelastic problems.

We review first the well-known constitutive equation of linear elastic bodies, the
generalized Hooke’s law, and then express it in a form that easy to be compared. For
convenience, we use tensor notations. We write Cartesian co-ordinates {x, y, z},
displacement components (i, v, w), strain components (&, &, &, %%y, ¥2%. ¥2%.) and
stress components (G, G, Gy Ty T T 88 {4 X1, Xa, X3}, (1, 4, w3)(E11, €22, €33, E12, €23, E31),
(011, OG22, O33, O12, Oa3, 031). Isotropic, linear, elastic constitutive equation can be
written as
lf—‘icv —L(o +0, +0;;)

E 11 E 11 22 33/

1 1+v 1%
€p =E[0'22 _V(Gaa +0'11)]=—E“°-22 ‘E(GH +t0 +O'33)’

€ =%‘[Gu “V(0y, +05,)]=

£ -1[0' v(o,, +0 )]—1+V0' —V(c +0,, +0,,)
22 E 33 11 22 E 33 E 11 22 33/

Y2 Opn 1+vVv 1+v
Ep=—_ == Oy €, = Oy
2 2G E E
Y Op 1+vV 1+v
Ep="_ = __ % Oy €, = Oy
2 2G E E
Yy Oy 1+v 1+v
g, =—"—=—=—0,, E,=—0,,, 1-1
31 2 2G E 31 13 E 13 (1 1 )
where E is elastic modulus, vis Poisson’s ratio and G is elastic modulus in shear.
(1.1-1) can be written in an abridged form (Fung“]).
1+v v L
£, =TG” —Eo,dﬁij (i, j=12,3). (1.1-2)

We have used the Einstein’s summation convention in (1.1-2). The convention is
as follows: An index (whether superscript or subscript) repeats once and only once in
a term will denote a summation with respect to that index over its range. The range of
an index i is the set of n integer values 1 to n (usually, 1 to 3). For example:
Ou = 011 + O + 033. An index that is summed over is called a durmmy index; one that
is not summed out is called a free index. Since a dummy index just indicates
summation, it is immaterial which symbol is used. Thus, G\ = G, and ax’'= ax". We
have also used the Kronecker & symbol. In &;, when i = j, it equals unit and when i # j,
it equals zero:

t Note that in this book the subscripts in 0}; indicate that the stress is acting on a plane normal to the
x;-axis and the stress component is in the x; -direction. This is notation is not the same as some of the
other books.
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_11 wheni=k,
O _{O, wheni # k.
In view of the above convention, (1.1-2) represents nine equations, that is (1.1-1).

This equation can be solved in the following form:
o, = Ag,d,; +2Ge (1.1-4)

where, A denotes Lamé’s constant. We shall also use bulk modulus K. Since isotropic
materials have only two independent material constants, there are certain relationships
between elastic constants that we shall use later. We list all these relationships in Table
1.1-1 (see, for example, Fung [1}).

(1.1-3)

i

Table1.1-1 Relationships between G, E, K, v and A
G E G K G, v G, A EKX E v Kv K A v, A
3EK E 3K(1-2v) 3 A1-2v)
G - - - - 9K - E 20+v) 21+v) 2(K—l) 2v
9GK GBA+2G 9K(K~- A -
El — 2G4y | 22229 — — K12y | XKD | A2
3K+ G A+G 3K-4 v
EG 26G(1 2 E 1
K _ (1+v) a+lc . o . A(l+v)
33G-E) 3(1-2v) 3 3(1-2v) 3v
E 3K-2G A 1 E A
v |—-1 — —(1-—) — — —_
2 23K+ G) 2(A+ G) 2 3K 3K-A
2 G(E-2G) K 30 2Gv 3K(3K-E) E 3K v
3G-E 3 1-2v - 9K-E (14+vX1-2v) 1+ v - -
We may add two useful relationships between elastic constants to this table:
A v
=1-2v, =—. (1.1-5)
A+G A+2G  1+v

For usual materials, 0<<v <1/2, for plastics, 1/3 < v< 1/2, 8/3 < K/G < ee; for
rock, K/G = 1.7, for glass, K/G = 2.7, for rigid body, G — o, K — o, If v = 1/4, we
have A = G. This simplifies the equations of elasticity considerably. The special value
v =1/2 implies that G = E/3, 1/K =0, and €= 0.

From (1.1-2) or (1.1-4) we can see that the strain tensor is not proportional to the
stress tensor. To reduce the strain-stress relation to a regular form, we may resolve the
strain tensor and stress tensor into a deviatoric tensor and a spherical tensor. The former
is related to the distortional change, and the later reflects the volume change of the body.
i 7

€ [ £
g, = € € X 0 0
11 3 12 13
& &y & €y Eu
l:em €y Exp| = €1 822"? €y +] 0 3 0
& &y 33 £y £
&5 € 833_—3— 0 0 T
N - - (1.1-6)
€ €
O'“—-?”‘ On O Tu 0 0
0, O, On _ Eu Eu
Oy 2 €xn | Oy 022‘? Oy + 0 ? 0
O3 2 33 e £
Oy O3 0'33_?& 0 0 __;,k_
L L .
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The components of strain and stress deviators are defined as follows:

1
e, =g, —gekké}j,

(1.1-7)
1
5; =0y —50,*5,7.

It is easy to show (see, for example, Reiner [2]) that (1.1-2) or (1.1-4) is equivalent
to the distortional equation and the dilatational equation:

e; =5;/2G or s;=2Ge,,
€4, =0,/3K or o, =3Ke,. (1.1-8)

We see that the constitutive equations for isotropic, elastic materials can be
resolved into two groups. The deviatoric equation expresses the proportionality
between the deviatoric strain tensor and the deviatoric stress tensor. The volume
change equation expresses the proportionality between spherical strain tensor and the
spherical stress tensor. We shall see later that the constitutive equation for isotropic,
viscoelastic material can also be resolved into two parts. That is deviatoric equation
and the volume change equation. If we take the Laplace transform of the both sides of
the constitutive equation for viscoelastic bodies, we may see that it has the same form
as the elastic constitutive equation. This motivates us to solve viscoelastic problem by
taking Laplace transform of the governing equations for viscoelastic bodies. In the
transformed mapping space, it reduced to the usual elastic problem. If this problem has a
solution, the solution of the original viscoelastic problem can be obtained by an inversion.

Before Section 6.8, we assume that the temperature is independent of time and the
space place and that displacements and strains are infinitesimal. We begin our discussion
from the simple shearing case for viscoelastic bodies and only discuss deviatoric
equation. The volume change equation and the uniaxial case can be discussed similarly.

1.2 Stress Relaxation

The phenomenon that the stress in a body reduces with time under constant strain
2e(t)=g,, (£) is called stress relaxation. We now consider
the behavior of a slab of material in simple

A B shearing motion (Fig. 1.2-1). Assume that it

s(f)=0y, (1)

—_— can be regarded as homogeneously
deformed, with the amount of shear e(r)
variable in time. Let s(f) be the shearing
stress. Since in this case the only existing
component of strain or stress is  ey(f) =

T 0 77, o) OF soll) = Oy(), we have ignored the
Fig. 1.2-1 Simple shearing history subscript for convenience and simply call it

strain or stress.
Consider the stress varying law under the action of the step shearing history e(7) =
eof(t) (at the instant ¢ = O strain e is applied suddenly and then holds constantly, see
Fig. 1.2-2(a)). Here the Heaviside unit step function &t) is defined as
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0, when <0,
o) {1, when £=0, (1.2-1)
In physics, we often use &) to describe a process of a variable that suddenly
change to unit at instant + = 0, and then holds constantly. If we muitiply it by a
continuous function, this implies that the function at the negative semi-axial has been
cut out and at ¢ = 0 has sudden jump of an amount f{0).
There are two limit cases: First, if the material is an idealized linear-elastic solid,
substituting e(r) = e¢o6(f) into the Hooke’s law s = 2Ge, we have

s(1) = 2Ge,B(t) = 5,0 (1), (1.2-2)

The stress suddenly increases from O to sp, and then holds constantly. It will never
relax forever (see Fig. 1.2-2(b)).

e(t) s(2) s(2)

e(l

(a) (b) (c)

Fig. 1.2-2  Stress relaxation under step-strain history
(a) Step-strain history  (b) Elastic bodies (c) Viscous bodies

Second, if the material is an idealized viscous fluid, substituting e(f) = ep&(¢) into
the Newton’s law s = 217 (d/dr)e, here 7 is the viscosity coefficient, we have

s(t) =2ne, 9—35—’) =2ne,5(t), (1.2-3)

(see Fig. 1.2-2(c)). Here &) is the Dirac-delta function, which is defined as a function
with a singularity at the origin:

5@) = {6° ‘v”vlﬁ";‘:l’t;% and fs(t)dt =!5(t)dt =1. (1.2-4)
Here 1 is any segment that includes the point # = 0. Equation (1.2-3) indicates that for
idealized viscous fluid, s(¢) tends to infinite under unit-step shearing strain at ¢ = 0.
This is due to the rate of strain tends to infinite. When ¢ > 0, s(r) completely relaxes to
zero. In physics, we often use &¢) to denote the distributive intensity function of a
concentrated quantity. This quantity often applies at a point, such as a concentrated
force, a point electric charge, mass of a mass point, etc. In this manner, we can treat the
continuous quantities and the concentrated quantities in a unified form. The &)
function is a kind of the generalized function, which have the following properties:

i9(t) =6(1), j5(t)dt =0(1). (1.2-5)
d:

—c0
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{ f(@,), when [ includes 1=t

[rosmar=r©, [fos@-1)dr=

0, when I does not include ¢= t

(1.2-6)
where f(¢) is a continuous function.

Close observation of real materials shows that neither of these idealizations is
quite accurate. Real material usually has both elastic and viscous properties. Under
step-shearing strain, the stress usually decreases from its initial value quite rapidly at
first, and late more gradually approaching some limiting value_ If this limiting value is
not zero or is zero, we may call it a solid (Fig. 1.2-3 (a)) or a fluid (Fig. 1.2-3 (b)).
Since these limits depend on one’s subjective judgment and any body could not wait so
long a time, some times it is different to absolutely distinguish a solid and a fluid (Fig.
1.2-3 (¢)).

s(0) s(f) (1)
S="7
S Seo
o 7, r O, r O 1
(2) (b) (©)

Fig. 1.2-3  Stress relaxation of real materials

We now define the abscissa 1, of the centroid of the shaded area of Fig. 1.2-3 (a),
(b) as the mean relaxation time

=]it[s(t)—sw]dt/]l[s(t)—su]dt. (1.2-7)

We use it as an order-of-magnitude estimate of the time required for stress
relaxation to approach completion. The smaller the 7, the shorter the time required for
completing the same percentage of the total quantity of stress relaxation {[so—s(#)]/[so
—5.,] }x100%. The distinction between solid and fluid is usually based on a subjective
comparison of the relaxation time and the time of observation (Pipkin [3]). We usually
call the material a solid or a fluid according to the ratio of the relaxation time over the
observation time is relatively long or short. If you are hit on the head by silly putty,
you will think that it is a solid even if it can flow like a viscous body. This is due to the
application time is so short by comparison with the relaxation time that the process
being complete before there is time for much stress relaxation and it reveals elasticity.
A tile can jump up and down when you throw it upon the water is another example of
fluid can reveal elasticity. On the contrary, if you can dabble your finger in a material,
you may probably call it a fluid even though it may return exactly to its initial shape
after a long time. That’s just the point that we must base on a relatively long
observation time when we select rheological models.



