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Preface

A great deal has been said in recent years about the widening
gap between calculus and advanced calculus. This gap might more
appropriately be said to exist between ‘“mechanical and intui-
tional” and “rigorous” mathematics. Regardless of terminology,
the fact remains that many students who continue in mathematies
beyond the calculus sequence find it a shocking experience, and
are frustrated by the sudden shift in emphasis from the mechanical
to the theoretical, from the concrete to the abstract.

'We have written this book in the hope that it may help to bridge
this gap. Although we rely on intuitional motivation wherever
possible, we have tried to maintain a high degree of precision in
the statements of definitions, axioms, and theorems, as well as
rigor in the proofs. We have also attempted to handle carefully
some of those elusive concepts which in calculus are declared
“beyond the scope of this book,” but which in advanced calculus

.and other higher level courses are often introduced casually by a -

statement such as “We assume that the reader is familiar with
. . .” Many examples are used to clarify and illustrate new con-
cepts as they are introduced. More than 300 problems, many of
which amplify or supplement material in the text, are included.
'We have deliberately avoided sketches, simply because they some-
times can be as misleading as they are helpful. (How many stu-
dents, for example, visualize a set of points on the real line as an
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interval merely because sets are so often illustrated in this fashion?)
However, it is recommended that the student and the instructor
use sketches freely in their work, bearing in mind the obvious
limitations of such sketches.

The first five chapters consist of a systematic development of
many of the important properties of the real number system plus
careful treatment of such concepts as mappings, sequences, limits,
and continuity. The introduction of open sets in Chapter IIT per-
mits a simultaneous treatment of these concepts from a topological
point of view without, however, mentioning the word *“topology’’
in the first five chapters. Thus an analyst might consider this
material as a course in “baby real variables,” whereas a topologist
might consider it as a development of the topology of the real line.
‘The sixth and final chapter discusses metric spaces, and generalizes
many of the earlier concepts and results to arbitrary metric spaces.

For review purposes, an index of axiom and key theorems is pro-
vided at the end of the book.

For the last three semesters, we have used this text, in its vari-
ous stages of development, as the basis of a semester course at
Harpur College, and have found it to be highly successful. This
course is now a prerequisite for our two-semester advanced cal-
culus sequence for mathematics majors, as well as for topology.
Our experience has shown that the first five chapters can be cov-
ered in a three-hour course, leaving Chapter VI available for
additional independent (or honors) work. The entire text could be
covered comfortably in a four-hour course. Although intended
primarily for sophomores who have completed the calculus se-
quence, this material has been given to some advanced under-
graduates and beginning graduate students, who have found it
both stimulating and challenging.

We would like to acknowledge the contributions, either direct
or indirect, of & number of our colleagues, notably Professors
Howard Alexander, Robert G. Bartle, Guilford Spencer, and Allen
D. Ziebur, all of whom suggested improvements in our original
manuscript. The concept of uniformly isolated sequences, used
extensively in the text, was developed by Professor Norman Levine
in a series of articles appearing in “The American Mathematical
Monthly.” We have drawn heavily on the material in Elementary
Topology, by Hall and Spencer, published by John Wiley & Sons,
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and we wish to acknowledge Professor Spencer’s co-authorship of
this earlier textbook, as well as his excellent review of the present
manuscript. Special thanks are due Professor Bartle for his careful
review of our work, which resulted in the corrections of many
errors and considerable improvement in the entire book.

The expert may wonder at our apparent preoccupation with
sequences, particularly in proofs involving constructions and the
Axiom of Choice. The treatment used herein is the culmination of
many discussions between the authors and Professor Ziebur. At
the latter’s suggestion, we have introduced an Axiom of Choice
for Sequences, and have made careful use of this axiom in many of
our proofs. Some of these proofs seem a little complicated, espe-
cially for sophomores, and are starred for possible omission at the -
instructor’s -discretion. We are indebted to Professor Ziebur for
his many helpful suggestions as well as for several of the proofs .
which he either created or improved. '

We also wish to express our appreciation to the Division of
Science and Mathematics, Harpur College, State University of
New York, and to the staff of John Wiley & Sons for their tre-
mendous help in the preparation of the manuseript.

Oclober 1962 K. W. ANDERSON
Dick Wick HaLn
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Introduction to sets and mappings

1. Sets

Mathematics requires precision in the expression of abstract con-
cepts and in the application of logical processes. This precision is
attained through the use of speeial terminology and symbols which
eliminate the normal ambiguity in everyday language. A mastery
of this terminology and symbolism is essential to the student who
expects to continue in the field of mathematics. For this reason,
we have attempted to explain each symbol carefully, and to define
each new concept precisely, labeling each as a definition for ease
of reference. Many terms in everyday usage have a special and
precise meaning in mathematics, and the student is cautioned not
to confuse the normal usage with the precise mathematical mean-
ing. :

The term set is used to designate a collection of objects of some
kind. These objects are called the elements, or members, or points
of the set. o

We generally designate sets by capital letters A, B, C, etc., and
members of a set by small letters a, b, ¢, etc. If a set A consists of
the points g, b, ¢, d, we write A = {a, b, ¢, d}. If A consists of just
the one point a, we write A = {a}, thus distinguishing between the,
point a and the set {a} consisting of only the point a. The notation
“a € A” means “a is a member of 4,” or “a belongs to A”; the

notation “a ¢ A” means “a does not belong to A.”
1
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Definition 1.1. The universe U is the totality of all points under
consideration (during any investigation), and is the source from
which we extract sets.

It is evident that the universe is itself a set, but it might be
considered as “the master set’’; that is, we restrict our horizon to
the universe at hand, and do not recognize the existence of any
other objects (or sets of objects) except those belonging to our
universe. Thus, for example, the equation 2 4 1 = 0 bas no solu-
tion in the universe consisting of all real numbers. When we
studied algebra, we found it necessary to enlarge our universe, and
this led to a new universe consisting of all complex numbers.

Before stating our next definition, let us digress for a moment to
discuss the term “if and only if,” which in the sequel will be ab-
breviated “iff.” Let o and 8 be two declarative statements. A
typical theorem of mathematics is a statement of the form “If o
is true, then g is true,” which is often shortened to “If «, then 8,”
or “a implies B.” Mathematicians consider the following state-
ments as equivalent; that is, any two of these statements have
precisely the same meaning:

o implies 8

« is a sufficient condition for 8

B is a necessary condition for a

if o then 8

Bif «

a only if 8
The typical definition in mathematics is a statement of the form
“q is true iff B is true.” Such a definition has the following equiva~
lent forms:

a is true iff 8 is true

a is a necessary and sufficient condition for 8

B is a necessary and sufficient condition for «

« implies 8 and B implies «
Mathematicians are pleased when they discover theorems which
are “iff”’ statements, since any such theorem provides two equiva-~
lent descriptions of the same concept.

Definition 1.2. A set A is & subset of a set B iff every point of
A is a point of B.
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The statement of Definition 1.2 means that both of the following
statements are true:

(1) If the set A is a subset of the set B, then every point of 4
is a point of B.

(2) If every point of the set A is a point of the set B, then 4
is a subset of B. :

The notation A C B (or equivalently, B D A) means “4 is a
subset of B,” or “the set A is contained in the set B,” or “B
containg A.”

Tt is clear from Definition 1.2 that for every set A, we must have
A CA.

We have seen that the statement A C B means that if p € 4,
then p € B. Thus, if 4 is not a subset of B (which we write A  B),
then there must exist some point p € A such that p & B. Now,
for any sets A and B, it is clear that one or the other of these con-
ditions must be satisfied. We express this as follows.

Theorem 1.3. If A and B are sets, then either A C Bor A ¢Z B.

Consider the set {1, 2, 3, 4, 5}, and let it be our universe; that
is, U = {1,2, 3, 4, 5}. The subsets of the universe U are deter-
mined by taking a Gallup poll. For example, suppose we have a
subset K C U, and we want to determine the members of K. We
poll the members of U with the following results:

Is1in K? Yes
Is2in K? No
Is 3in K? No
Is4in K? Yes
Is5in K? Yes

Since we have polled our entire universe, we conclude that
K = {1,4,5}.

Suppose we have another subset H C U, and here our Gallup
poll yields a “no” from every member of U. We must then conclude
that the set H contains no elements. For reasons that will become
clear later, we still choose to consider H as a set, which we call the
empty set and define as follows.

Definition 1.4. The empty set is the set containing no elements,
and is denoted by ¢.
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Given any set A, it cannot be true that ¢ ¢ A, since there are
no points in ¢. Therefore, by Theorem 1.3, we have the following
lemma.

Lemma 1.5. If 4 is any set, ¢ C A.

Returning to the preceding example, suppose we have a subset
J C U, and here our Gallup poll yields a “yes” from every member
of U. We must then conclude that the sets J and U consist of
exactly the same points, and are thus indistinguishable; that is,
we have merely given the same set two different names. This leads
us to the notion of equality of sets.

Definition 1.6. Two sets A and B are equal (written A = B)
if ACBand BC A.

A reasonable question to ask at this point is: How many subsets
can be extracted from a universe consisting of n points, where n is
any positive integer? The answer lies buried in the technique of
our Gallup poll. We have a total of n members to poll, and each
member can give us one of two answers, “yes” or “no.” If the
answer is “yes,” the point is in the subset; if the answer is “no,”
the point is not in the subset. Thus, in choosing subsets, we have
two choices for each member of the universe: We can either take 4t
as a member of the subset, or leave it out. Since our choice at any
particular member is independent of our choice at each of the
other members, we find that we have 2X 2 X 2X ... X2 (n
factors) choices, or 2* possible subsets. In our earlier example,
where U = {1, 2, 3,4, 5}, we have 25 = 32 subsets. We could
arrive at this result in still another way by considering the various
subsets as combinations of ‘“yes’” answers in our poll, and using
the theory of combinations from algebra. Remembering that the
number of combinations of n things taken r at a time is given by
the formula C(n, r) = n!/[r!(n — r)!], we see that the number of
subsets consisting of just one point corresponds to the number of
combinations of just one ‘“‘yes” among the five answers, or
C(5,1) = 51/(114)) = 5. Similarly, the number of subsets consist-
ing of two points is C(5,2) = 5!/(213!) = 10; three points,
C(5, 3) = 10; four points, C(5, 4) = 5; five points, (recalling that
0! = 1 by definition), C(5, 5) = 1, where this single subset with
five points is, of course, the set U itself. Finally, the number of
subsets containing no points is C(5, 0) = 1, where this single set
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is the empty set. The total number of subsets is then
5+ 10 4 10 4+ 5 + 1 4+ 1 = 32, which agrees with our preceding
result.

Definition 1.7. The iniersection of two sets A and B (written
A N B) is the set of all points which are in both A and B.

Definition 1.8. The union of two sets A and B (written A U B)
is the set of all points which are in at least one of the sets A and B.

To illustrate these concepts, let us consider an example.
Example 1.9. Let the universe be U = {1, 2, 3, 4, 5, 6, 7}, and
suppose we have the following subsets:
A = {1,2,5} C =
B = {2,383, 4} D= {1,2,4,6}
Then
ANB={2}; AND={,2}; BND=1{2,4; CND=¢
Also
AUB={1,2345; BUC={2,3,4,517; CUD=UT
We shall make free use of parentheses, much the same as in

algebra. For example, Definitions 1.7 and 1.8 extend to more than
two sets under the convention:

ANBNC=ANB)NC;
ANBNCND=ANBNCOND

AUBUC=AUBUC;
AUBUCUD=(AUBUC) U D, ete.

Also, parentheses are essential when unions and intersections are
combined, as in A U B N C. Here we may choose either the set
(AUB)NC or the set AU (BN C), and these two sets are
generally not equal. To see this, consider the universe U and the
sets A, B, and C defined in Example 1.9. A little calculation
(verify this) shows that (A U B) N C = {3, 5}, whereas
AUBNCQO = {1:2)3,5}'

We have seen that a set may be empty, and thus, if we are
considering an arbitrary set 4, we must allow for the possibility
that A = ¢. (When we wish to exclude this possibility, we speak
of a nonempty set A.) This brings up the following natural question:
What happens if the empty set ¢ is involved in a unjon or an inter-
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section? The answer follows immediately from Definitions 1.7 and
1.8, but because of its importance we state it for easy reference as
8 lemma. ’

Lemma 1.10. If A is any set (including A = ¢), then
AN¢=¢and AU ¢ = A.

One of the important techniques of set theory is that of proving
set equalities. Suppose, for instance, that we want to prove the

following:
' ANBUC=ANBUMANC)
We might first test it by trying it on some particular sets. Let us
again use Example 1.9. We see that 4 = {1,2, 5}, and
BUC = 1{2,3,4,5,7}, so that AN (BU C) = {2, 5}. On the
other hand, A N\ B = {2}, and 4 N C = {5}, so that
ANBUMANC) = {25

‘We have thus verified the equality for our particular choice of sets.
Note, however, that we have not proved the statement, any more
than we can prove the trigonometric identity sin 2z = 2 sin z cos
merely by verifying it for the particular choice z = 0. However,
we cannot be sure that the statement is wrong either. Therefore
it seems reasonable to try to prove it. The general method for
proving equality 'of sets is indicated by Definition 1.6; that is, we
show that each set is contained in the other. For simplicity of
notation, let us designate the left-hand set above by L, and the
right-hand set by R, so that we wish to prove L = R.

We choose an arbitrary point p € L, and show that p € R.
Since the choice of p is arbitrary, we conclude that every point of
L is also a point of R; that is, L C R. Similarly, we choose an
arbitrary point p € R, show that p € L, and conclude that R C L;
hence L = R. We now state the set equality as a theorem, and
give a formal proof, following the preceding method. In this first
proof, we have numbered each step, and we have also supplied
reasons for each conclusion in the first half of the proof. This
procedure is employed merely to clarify the technique, and is not
continued in subsequent proofs.

Theorem 1.11 (The Distributive Law for Intersections
over Unions). If 4, B, C are sets, then

ANBUC=ANBUMANC)
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Proof. We prove first: ANBUCO)CANBUMANCQ).
1) If A N (B U C) = ¢, the result is trivial.
(by Lemma 1.5)
@IEANBUC) #¢letpc ANBUCIO).
(3) Then p € A and p € (B U C). (by Definition 1.7)
(4) Butp € (BU C) means p € Bor p € C.
(by Definition 1.8)
(5) Case 1. If p € B, then p € (A N B).
(by Definition 1.7 and (3))
Therefore p € (AN B)U (A NC)
‘ (by Definition 1.8)
Case2. i p€ C,thenp € (A N O).
(by Definition 1.7 and (3))
Therefore p € (A N B) U (A N C).
(by Definition 1.8)
(6) Consequently AN BUC)CANBUMANO).
(by steps (2) to (5) and
Definition 1.2)
To complete the proof of the theorem, we must show that
ANBUANCCANBUC)
1) If (4 N B) U (A NC) = ¢, the result is trivial.
@IEANBUMANC #=¢letpC(ANB)UMAND.
(3) Then, p € (4 N B) orp € (4 N C).
(4) Casel. If p€ (AN B),thenp € Aand p € B.
Now p € B implies p € (BU O).
Therefore p € A N (B U C).
Case2. If p€ (ANC), thenp € Aand p € C.
Now, p € C impliesp € (B U C).
Therefore p € A N (BU C).
(5) Hence (A NB)UANC)CANBUO).
Consequently AN (BUC)=ANBUMANDO). QED
The second half of Theorem 1.11 can also be established in the
following neat way, using Problem 8. We see at once that

BCBUC ad CCBUC
By Problem 8,

ANBCANMBUC) and ANCCANMBUO
Therefore (A NB) U (A NC)C AN (BUO). QED
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Theorem 1.12. Given any set A in the universe U, there is
exactly one set X such that both of the following conditions hold:
@AUX=U @®GANX=9¢

Proof. Suppose that there exist two such sets X and Y satisfy-
ing these conditions. Then
AUX=U, ANX=¢, AUY=U ANY =%
Consequently
Y=YNU=YNUAUX)=TNAUFNX)=YNX

Therefore, by Problem 3, ¥ C X. By a similar argument, X C Y.
Therefore X = Y, and we have proven that there cannot be two
sets satisfying the given conditions. There is at least one set satis-
fying these conditions, the set X defined as all points of U not in
A. This completes the proof of the theorem. QED

We define the complement of a set A in the universe U to be
the unique set X defined in Theorem 1.12. The word “unique” as
used in mathematics means “‘one and only one.”

Definition 1.13. The complement of a set A in the universe U/
is the unique subset X of U satisfying the two conditions

AUX=U ANX=9¢
We denote the complement of A by C(4), and observe that C(4)
consists of all elements of U which are not in A.

It follows from Definition 1.13 that if U is the universe, then
C(U) = ¢ and C(¢) = U.

In general, when we are considering’ arbitrary sets, we may
tacitly assume that some universe U is given, and that all the sets
we are considering are subsets of U. Similarly, we may discuss the
complement of a set, again assuming that we have taken the com-
plement with respect to our universe U

Theorem 1.14. For any set A, C[C(4)] = A.

Proof. We see from Definition 1.13 that C[C(4)] is the unique
set X satisfying both of the equations

CAHUX=U CANX=9¢

Since X = A satisfies both these equations, we have at once
A = C[C(4)] QED
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Theorem 1.15. If A and B are sets, then A C B iff
C(B) C C4).

Proof. Suppose first that A C B. By Problem 8,

ANCB)CBNCB) =
so that A N C(B) = ¢. Consequently
CB)=CB)N[AUCA)]
= [C(B) N A] U [C(B) N C(4)] = C(B) N C(A)
Therefore, by Problem 3, C(B) C C(4). '

For the converse, suppose that C(B) C C(4). Then by the pre-
ceding paragraph, C[C(4)] C C[C(B)], which, by Theorem 1.14,
can be written in the forin A C B. This completes the proof.

QED

The next theorem states some important relationships among

omplements, unions, and intersections.

Theorem 1.16 (DeMorgan’s Laws). If A and B are sets, then
(@ CAUB)=C(A)NCB); (b) C(ANB)=CA4)UCB)
Proof of (a). We prove that C(4 U B) C C(4) N C(B). It is
easily seen that A C AU B and B C A U B. Therefore, by
Theorem 1.15, C(A U B) C C(4) and C(4 U B) C €(B). Con-
sequently _
CAUB CCAYNCB
To complete the proof of (¢), we must show that
CA4)NCB)CCAUB
By Lemma 1.6, we lose no generality if we assume that the left-
hand set is non-empty, Let p € C(4) N C(B). Then p € C(4)

and pE€ C(B),s0 pZ A and p & B. Thus p & (4 U B), and
hence it follows that p € C(4A U B). Therefore

C(4) N C(B) CC(A U B)
and (a) is proved.
The proof of (b) is left as an exercise.

Let us now consider an application of set theory where the
universe does not consist of numbers. Let a and b be two state-
ments, each of which in a given situation is either true or false.
Let S be the set of all logical situations in which a¢ and b occur;



10  Sets, sequences, and mappings

that is, S is the universe in this case. We may then define the
following sets:

A = set of all situations in which q is true.
C(A) = set of all situations in which a is false.
B = set of all situations in which b is true.
C(B) = set of all situations in which b is false.

Now suppose we make the following direct statement, which we may
assert as a theorem: “If a is true, then b is true.” This says that,
of all the situations in S, those for which a is true must be included
among those for which b is true; or, in terms of the sets just defined,
A C B. We can now apply Theorem 1.14 to obtain C(B) C C(4).
Using the same definitions, this is the same as the assertion: “If b
is false, then a is false.” This latter statement is the contrapositive
of the given direct statement, and we have just indicated by means
of set theory that any direct statement is logically equivalent to its
contrapositive statement.

We now prove a simple theorem from number theory to illus-
trate the contrapositive technique of proof.

Theorem 1.17. If the square of a positive integer is even, then
the positive integer is even.

Proof. The contrapositive of the given statement is as follows:
If a positive integer is odd (that is, not even), then its square is
odd. To prove this, we note that any positive integer which is odd
can be written in the form 2k — 1, where k is a positive integer.
The square of this integer is then '

(2 — 1) =4k — 4k + 1 = 2(2k* — 2k) + 1
which is clearly an odd integer. QED

PROBLEMS

1. If U = {a, b, ¢, d}, find all the subsets of U.
2. Let U= {1,2,3,4,5,6,7,8,9,10}, and let 4, B, and H be defined
as follows: 4 = {6,8,9}, B = {1,3,7,8,9}, H = {2, 6,8, 9}. Then

(@) Find AU Band 4 N H.

(b) Find (A NB) U H.

(c) Find C(B).

(d) Find the set K defined as follows: The point z is in K iff z + 3 is
in A.



