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Solomon Lefschetz (1884-1972) was one of the great mathematicians
of his generation. This volume published posthumously and completed
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PART I

APPLICATION OF CLASSICAL TOPOLOGY
TO GRAPHS AND NETWORKS






PREFACE

This monograph is based, in part, upon lectures given in the
Princeton School of Engineering and Applied Science. It presupposes
mainly an elementary knowledge of linear algebra and of topology. In
topology the limit is dimension two mainly in the latter chapters
and questions of topological invariance are carefully avoided.

From the technical viewpoint graphs is our only requirement.
However, later, gquestions notably related to Kuratowski's classical
theorem have demanded an easily provided treatment of 2-complexes

and surfaces.

January 1972 Solomon Lefschetz



INTRODUCTION

The study of electrical networks rests upon preliminary theory
of graphs. In the literature this theory has always been dealt with
by special ad hoc methods. My purpose here is to show that actually
this theory is nothing else than the first chapter of classical
algebraic topology and may be very advantageously treated as such by
the well known methods of that science.

Part I of this volume covers the following ground: The first
two chapters present, mainly in outline, the needed basic elements of
linear algebra. In this part duality is dealt with somewhat more
extensively. In Chapter III the merest elements of general topology
are discussed. Graph theory proper is covered in Chapters IV and V,
first structurally and then as algebra. Chapter VI discusses the
applications to networks. In Chapters VII and VIII the elements of
the theory of 2-~dimensional complexes and surfaces are presented.
They are applied in Chapter IX, the last of Part I, to the important
question of planar graphs, Kuratowski related theorem, and dual
networks.

It is to be noted that in the electrical part, linearity has
nowhere been assumed. In general as regards networks, I have been
considerably inspired by the splendid paper of Brayton and Moser: A
theory of nonlinear networks, Quaterly of Applied Mathematics, Vol. 29,
pp. 1-33, 81-104, 1964.

The exposition of the material is new in many parts; moreover
in certain parts the material is completely new. This is notably the

case in Chapter IX.



CHAPTER I

A RESUME OF LINEAR ALGEBRA

Two elements dominate linear algebra: matrices and vectors.
One may identify vectors with certain matrices but not vice versa.
Thus matrices are the dominant feature. We shall, therefore, first
deal with matrices and then with vectors.

As appropriate for a résume, proofs will rarely be given and

for them the reader is referred to any standard text on the subject.

1. Matrices

A matrix is a rectangular array of elements

—
%11 %12 --- alnw
Q51 Byy ee-

__aml ®m2 "¢ amn_d

Such an array, known as m X n matrix is usually abridged as

[ajk] or even written a. The standard matrix operations are:

Addition: The sum of two m x n matrices, a as above and

b = [bjk] is the matrix
a+ b= [ajk + bjk];

Product: With a as before and b an n X p matrix one

defines
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The implication is that in both addition and multiplication the
operations indicated have a meaning. This is usually clear from the
context but one must not be entirely careless about it.

The transpose a' of the m x n matrix a is the n xm
matrix obtained by permuting the rows and columns of a. Note that
if ab has a meaning (ab)' = b'a'.

The derivative of a matrix a(t) = [ajk(t)] of elements

differentiable functions of t is
a(t) = [ajk(t)]-

Square matrices. These are the n X n matrices. The number

n 1is the order of the matrix.
A square numerical, n X n matrix has a determinant written
|ajk] or J|a|. The matrix is singular if |a| = 0, nonsingular
otherwise.
The square matrix with diagonal Ayreeerdy and zeros outside
is frequently written diag(al,...,an). The unit matrix of order n,
written En or E (when n is obvious) is diag(l,1l,...,1) (n terms).
A nonsingular matrix a has an inverse a‘l characterized by
aa™l = ala = E. 1f la] + 0, |b] # 0, then (ab) ™! = b ™la™t.

Recall this important property: inversion and transposition
1

commute. That is (a_l)'= (a'y~
Evidently, sums and products of n X n matrices are n X n

matrices.

Rank of a matrix. The rank p of an m x n numerical matrix

a 1s the largest order of a nonzero determinant formed from the

elements of a.

(1.1) Theorem. Let a be an m X n matrix and b,c non-

singular square matrices of respective order m,n. Then

rank a = rank b a c.
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It is convenient to note that if a = [ajk] is m x n and
b = diag(bl,...,bm), c = diag(cl,...,cn).
Then
ba = [bj ajk], ac = [ajk St -

2. Vectors and Vector Spaces

Vectors are inextricably mixed with a collection of numbers,
the scalars, called a field. A field is simply any set of elements
obeying the ordinary rules of rational operations, for example all
real or all complex numbers. However an interesting field is made up

of just two elements 0 and 1 wunder these rules:

1

In that field, called the field mod 2, x = =X, z

=x, (x % 0)
hence subtraction and division may be forgotten. This is the ideal

field in geometric questions in which direction does not occur.

Take now a fixed field F and n elements Al,...,An which
obey no special relation (pure symbols). Form all the expressions
A = q

Fooe
1 A1 + %n An

with coefficients in P, the obvious rule for addition and the con-

ventions A = 0 if every ay = 0, likewise
oA = (aal) Al +oeat (uan) An

for every o in F. The collection of all expressions A 1is a

vector space V, the elements A are the vectors.

The vectors Bl'BZ""'Bp are linearly dependent if there

exists a relation

Sl Bl teeot Br Br =0, Bh in F
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with the Bh not all zero (non-trivial relation). If no such re-
lation exists the Bh are linearly independent (the term "linearly"
is often omitted in such statements). The maximum number of linearly

independent vectors is the dimension of V
dim V = n. (2.1)

Bases. A base for the space V 1is a set Bl""’Bs of in-

dependent vectors such that every vector C satisfies a relation

C = Bl By Hee-t Bs Bys Bh in F.

(2.2) A base consists exactly of n( = dim V) elements.

(2.3) Any n independent elements form a base. Hence

Al,...,An is a base.

Isbmorghism. Two vector spaces V,W over the same field F
are isomorphic,written V ~ W, if there is a one-one correspondence
between their elements preserving the relations of dependence between
them. That is if Bl""’Bs are elements of V and C corre-

h
sponds to Bh then the relations

L8, B, =0 I8,C =0
imply one another.

(2.4) N.a.s.c. to have V v W is that they have the same

dimension.

(2.5) If V W one may select for them resgpective bases

{Bh}, {Ch} such that the isomorphism between them associates

I 8, B, with ] B, C,.

Change of base. Let {Bh}, {Ch} be two bases for the same

vector space V. We have the relations
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Ch =1 vy Byr By =1 BpyCy
with the B8,y in the field F, As a consequence there follow
B, = E Bhs Ysk Bxr N = Ls2,...,n. (2.6)

However, since the Bh are independent these relations must be

identically true, that is

1 if h =k
2 Bhs Ysk ~ 0 otherwise

This means that the product

|
(]

[Byy] - [vpy] (2.7)

and implies for the determinants

[thl'thjI

Consequently, the matrices [th] and [th] are non-singular.

Conversely any relation

is a change of base from {Bh} to {Ch} for the space V.

Remark. The important properties of the space V are those
which are invariant with respect to changes of base. For the
present we only have the dimension, but other properties will appear

in the application to graphs.

Direct sum. Let Vl,V2 be two vector subspaces of V
(vector spaces over the same field whose vectors are all in V). We

say that V 1is their direct sum and write

VvV = V1 ® V2



