COMPREHENSIVE ORGANIC TRANSFORMATIONS

COMPREHENSIVE ORGANIC TRANSFORMATIONS

A Guide to Functional Group Preparations

By Richard C. Larock

Richard C. Larock
Department of Chemistry
Iowa State University
Ames, Iowa 50011

Library of Congress Cataloging-in-Publication Data

Larock, Richard C., 1944-

Comprehensive organic transformations: a guide to functional group preparations/by Richard Larock; foreword by H. C. Brown

p. cm.

Includes index.

ISBN 0-89573-710-8

1. Chemistry, Organic-Synthesis. I. Title.

QD262.L355 1989

547'.2-dc19

89-30333

CIP

British Library Cataloguing in Publication Data

Larock, Richard C.

Comprehensive organic transformations:

a guide to functional group preparations.

1. Organic compounds. Synthesis

I. Title

547'.2

ISBN 0-89573-710-8

© 1989 VCH Publishers, Inc.

This work is subject to copyright.

All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks.

Registered names, trademarks, etc., used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the United States of America. ISBN 0-89573-710-8 VCH Publishers ISBN 3-527-26953-3 VCH Verlagsgesellschaft

Printing History:

10 9 8 7 6 5 4 3 2

Published jointly by:

VCH Publishers, Inc. 220 East 23rd Street

Suite 909

New York, New York 10010

VCH Verlagsgesellschaft mbH

P.O. Box 10 11 61

D-6940 Weinheim

Federal Republic of Germany

VCH Publishers (UK) Ltd. 8 Wellington Court Cambridge CB1 1HW United Kingdom

The text and chemical structures in this book were set by Science Typographers, Inc., 15 Industrial Boulevard, Medford, L.I., New York 11/63

FOREWORD

At one time organic chemists looked askance at those who elected to devote their research effort to the development of new, selective methods for achieving chemical transformations of organic compounds. Early practitioners in this area received many critical comments—it was felt that the proper objective of organic chemists was the synthesis of natural products, and that one should only develop a new method when such a method was required to overcome a hurdle in the synthetic procedure. But we persisted. Now there appears to be a general acceptance of the value of such research.

Now a new problem has appeared. We have brought forth so many new, highly selective synthetic methods that it is difficult for the chemist to know all of them and to select the method that would be most effective for the synthesis in hand. One approach is to publish monographs that review specialized areas. For example, my own field of borane reagents was reviewed 15 years ago (Organic Syntheses via Boranes, by H. C. Brown, Wiley, 1975). A more recent book of this sort is Borane Reagents, by A. Pelter, K. Smith, and H. C. Brown, Academic Press, 1988.

But such specialized books solve only part of the problem. In the present work, Richard C. Larock has set himself the goal of organizing the entire panoply of synthetic methods. But there are now so many methods that even brief descriptions of each procedure would have produced a work as large as the new Oxford English Dictionary (16 volumes, Oxford University Press, 1986). Instead, he adopted the unique solution of indicating the reagent and transformation, with pertinent references. This provides a concise summary that should be of enormous assistance to those searching for a selective reaction to achieve a desired transformation in the presence of difficult substituents. This problem is frequently faced today by those who undertake the involved syntheses that are often an important objective of current research.

One must admire Richard Larock's courage in undertaking this monumental task.

Herbert C. Brown H. C. Brown and R. B. Wetherill Laboratories of Chemistry, Purdue University West Lafayette, Indiana

PREFACE

Organic synthesis is one of the most rapidly developing areas of chemistry. Every day useful new reagents and reactions are reported worldwide in the chemical literature. It is increasingly difficult for the organic chemist to keep up with the latest in synthetic organic methodology without spending an inordinate amount of time reading a wide variety of chemical journals, including those whose focus is not strictly synthetic organic chemistry.

In recent years a variety of books and reviews have appeared to aid the organic chemist interested in synthetic methodology, but even the best of these have now ballooned to inconvenient multivolume sets whose cost is prohibitive to those just entering the field. The intent of the present volume is to provide a comprehensive, highly condensed, systematic collection of useful synthetic methodology that both the beginning student and the long-time practitioner of organic synthesis will find useful.

This book began in 1973 as a series of course handouts designed to cover the key reactions of the major organic functional groups. Like the aforementioned publications, this reference work has grown rapidly over the years to a major treatise covering a vast amount of synthetic organic methodology. It was felt that the synthetic organic community might find this compilation useful, so a serious effort has been made in the last two years to thoroughly update and organize this material for publication.

The author takes full responsibility (and credit?) for the choice of reactions and references. Obviously not every reaction or reference could be included. In choosing material for this text the author has observed the following guidelines. All reactions to be included should be general in scope or else so unique that the methodology will find real synthetic utility. Yields should generally be at least 50%. Reagents should be readily available or easily prepared and handled in the laboratory. As much as possible, similar transformations should appear together in as concise a format as possible. Significant limitations in methodology shall be noted. No effort has been made to cover the use of protecting groups since excellent reviews on this subject are already available. Likewise, heterocyclic chemistry has consciously been omitted, except where heterocycles have been employed to effect simple functional group manipulations. Multiple group transformations have been covered, although they present certain organizational problems. To those chemists whose contributions to synthetic organic chemistry may have been slighted or altogether ignored, I apologize. It would be appreciated if major errors or omissions be brought to the author's attention so that future printings or subsequent editions may be corrected.

All reactions have been systematically organized according to the functional group being synthesized, with no attempt to cover the less important functional groups. Within each section the methodology is subdivided into major processes, such as oxidation, reduction,

alkylation, etc. It is hoped that the reader will easily find the desired transformations by skimming the detailed Table of Contents, although an extensive Transformation Index is available in time of need.

Literature coverage is complete through 1987. Some 160 or more primary chemical journals and a number of books and reviews have been abstracted. Obscure journals not readily available to most synthetic organic chemists have been avoided. The names of authors have been omitted to save space. Original publications have not always been cited if they do not necessarily describe the best reaction conditions for running the reaction or purvey little of the scope of the reaction. References containing full experimental procedures, though they may be buried in an experimental section, have been favored over communications lacking such details. An attempt has been made to highlight reviews and significant publications. One immediately encounters problems in deciding where to draw the line on references. Initial reports of a useful new reaction have received complete coverage. However, the time soon comes when a truly significant reaction, such as the use of ester enolates in synthesis, appears routinely in publication after publication and no reviews have appeared. In such situations, the author has tended to include all new material and may not have had the time to omit the more inconsequential earlier references.

It is hoped that the reader finds this effort worthwhile and will not hesitate to make suggestions on ways this material may be improved.

Richard C. Larock Ames, Iowa U.S.A. May, 1988

ACKNOWLEDGMENTS

The preparation of a book of this magnitude requires the assistance of a number of people. The author is indebted to Iowa State University for providing the time and assistance necessary for the preparation of much of this book. The Department of Chemistry at the University of Hawaii at Manoa is gratefully acknowledged for having provided a visiting professorship which allowed the author to push this manuscript through to publication.

To those around me who have had to "endure" this book, your patience and perseverance are appreciated. To my students who have sometimes had to take a back seat to this project, I thank them for waiting. To those who volunteered to help in proofing the final text, I extend my gratitude.

I must also acknowledge a core of dedicated secretaries over the years who have continually updated this material for classroom use. Most important of these secretaries is Mrs. Nancy Qvale, who is responsible for the preparation of a major portion of this work and bore the burden of putting this manuscript in final form. Without her outstanding technical assistance and dedication, this book might never have materialized.

LITERATURE ABBREVIATIONS

Acct Chem Res Acta Chem Scand Acta Chem Scand B

Adv Alicyclic Chem Adv Carbohydr Chem

Adv Catalysis Adv Chem Ser

Adv Heterocyclic Chem

Adv Org Chem

Adv Organometal Chem

Adv Photochem Adv Phys Org Chem Agric Biol Chem Anal Chem Anal de Quim

Angew Int Ann

Ann Chim

Ann NY Acad Sci Ann Rep Med Chem

Appl Microbiol

Appl Microbiol Biotechnol

Arch Pharm Arkiv Kemi Austral J Chem

BCSJ Ber Biochem

Biochem Biophy Res Commun

Biochem J

Biochim Biophys Acta

Bioorg Chem

BSCF

Bull Acad Polon Sci, Ser Sci Chem

Bull Acad Sci USSR, Div Chem Sci

Bull Korean Chem Soc Bull Soc Chim Belg

CA
Can J Chem
Cancer Lett

Accounts of Chemical Research Acta Chemica Scandinavica

Acta Chemica Scandinavica. Series B: Organic Chemistry

and Biochemistry

Advances in Alicyclic Chemistry Advances in Carbohydrate Chemistry

Advances in Catalysis Advances in Chemistry Series Advances in Heterocyclic Chemistry

Advances in Organic Chemistry: Methods and Results

Advances in Organometallic Chemistry

Advances in Photochemistry

Advances in Physical Organic Chemistry Agricultural and Biological Chemistry

Analytical Chemistry Anales de Quimica Angewandte Chemie

Angewandte Chemie, International Edition in English

Justus Liebig's Annalen der Chemie

Annales de Chimie

Annals of the New York Academy of Sciences Annual Reports in Medicinal Chemistry

Applied Microbiology

Applied Microbiology and Biotechnology

Archiv der Pharmazie Arkiv for Kemi

Australian Journal of Chemistry

Bulletin of the Chemical Society of Japan Berichte der Deutschen Chemischen Gesellschaft

Biochemistry

Biochemical and Biophysical Research Communications

Biochemical Journal

Biochimica et Biophysica Acta

Bioorganic Chemistry

Bulletin de la Societe Chimique de France

Bulletin de l'Academie Polonaise des Sciences, Serie des

Sciences Chimiques

Bulletin of the Academy of Sciences of the USSR. Division

of Chemical Science

Bulletin of the Korean Chemical Society Bulletin des Societes Chimiques Belges

Chemical Abstracts

Canadian Journal of Chemistry

Cancer Letters

Carbohydr Res Catal Rev

CC

Chem Eng News Chem in Britain

Chem Ind

Chem Listy

Chem Pharm Bull Chem Phys Lipids

Chem Rev
Chem Scripta
Chem Soc Rev
Chem Weekb
Chem Zeitung
Chem Zentr

CL

Coll Czech Chem Commun

Compt Rend

Compt Rend C

Curr Sci

Discuss Faraday Soc

Fortschr Chem Forsch Fund Res Homogeneous Catal

Gazz Chim Ital

Helv

Ind Eng Chem Ind J Chem Ind J Chem B

Inorg

Int J Sulfur Chem

Intra-Science Chem Reports

Israel J Chem

Izv Akad Nauk SSSR, Ser Khim

J Am Oil Chem Soc

J Antibiotics

J Biol Chem

J Catalysis

J Chem Eng

J Chem Eng Data J Chem Res (S)

J Fluorine Chem

J Gen Chem USSR J Heterocyclic Chem

J Ind Chem Soc

Carbohydrate Research

Catalysis Reviews

Journal of the Chemical Society: Chemical Communications

Chemical and Engineering News

Chemistry in Britain Chemistry and Industry

Chemicke Listy

Chemical and Pharmaceutical Bulletin Chemistry and Physics of Lipids

Chemical Reviews
Chemica Scripta
Chemical Society Reviews
Chemisch Weekblad
Chemiker Zeitung
Chemisches Zentralblatt

Chemistry Letters

Collection of Czechoslovak Chemical Communications Comptes Rendus Hebdomadaires des Seances de l'Academie

des Sciences

Comptes Rendus Hebdomadaires des Seances de l'Academie

des Sciences. Serie C: Sciences Chimiques

Current Science

Discussions of the Faraday Society

Fortschritte der Chemischen Forschung

Fundamental Research in Homogeneous Catalysis

Gazzetta Chimica Italiana

Helvetica Chimica Acta

Industrial and Engineering Chemistry

Indian Journal of Chemistry

Indian Journal of Chemistry. Section B: Organic Chemistry

and Medicinal Chemistry

Inorganic Chemistry

International Journal of Sulfur Chemistry

Intra-Science Chemistry Reports
Israel Journal of Chemistry

israel Journal of Chemistry

Izvestiia Akademii Nauk SSSR. Seriia Khimicheskaia

Journal of the American Oil Chemists' Society

Journal of Antibiotics

Journal of Biological Chemistry

Journal of Catalysis

Journal of Chemical Education

Journal of Chemical and Engineering Data Journal of Chemical Research. Synopses

Journal of Fluorine Chemistry

Journal of General Chemistry of the USSR

Journal of Heterocyclic Chemistry

Journal of the Ina. Themical Society

J Label Compds
J Lipid Res
J Med Chem
J Mol Catal
J Nat Prod

J Pharm Sci J Photochem

J Polym Sci, Polym Chem Ed

J Prakt Chem

J Russ Phys Chem Soc

J Sci Ind Res B

J Vitaminol (Osaka)

JACS JCS JCS A

JCS D
JCS B

JCS Dalton JCS Japan JCS Perkin I JCS Perkin II JOC

JOC USSR JOMC

Methods Carbohydr Chem Monatsh

Natl Prod Repts Naturwiss Newer Methods Prep Org Chem Nouv J Chim

Org Mag Res
Org Photochem
Org Prep Proc Int
Org Rxs
Org Syn

Org Syn Coll Vol Organomet

Organomet Chem Rev A

Organomet Chem Syn

Phosphorus and Sulfur Photochem Photobiol Pol J Chem Polym J Journal of Labelled Compounds
Journal of Lipid Research
Journal of Medicinal Chemistry
Journal of Molecular Catalysis
Journal of Natural Products
Journal of Pharmaceutical Sciences

Journal of Photochemistry

Journal of Polymer Science: Polymer Chemistry Edition

Journal für Praktische Chemie

Journal of the Russian Physical Chemical Society Journal of Scientific and Industrial Research. Part B: Physical Sciences

Journal of Vitaminology

Journal of the American Chemical Society

Journal of the Chemical Society

Journal of the Chemical Society. Section A: Inorganic,

Physical and Theoretical

Journal of the Chemical Society. Section B: Physical Organic Journal of the Chemical Society. Section C: Organic Journal of the Chemical Society. Section D: Chemical

Communications

Journal of the Chemical Society: Dalton Transactions

Journal of the Chemical Society of Japan

Journal of the Chemical Society: Perkin Transactions I Journal of the Chemical Society: Perkin Transactions II

Journal of Organic Chemistry

Journal of Organic Chemistry of the USSR Journal of Organometallic Chemistry

Methods in Carbohydrate Chemistry

Monatshefte für Chemie

Natural Product Reports Naturwissenschaften

Newer Methods of Preparative Organic Chemistry

Nouveau Journal de Chimie

Organic Magnetic Resonance
Organic Photochemistry

Organic Preparations and Procedures International

Organic Reactions Organic Syntheses

Organic Syntheses. Collective Volume

Organometallics

Organometallic Chemistry Reviews. Section A: Subject

Reviews

Organometallics in Chemical Synthesis

Phosphorus and the Heavier Group Va Elements Phosphorus and Sulfur and the Related Elements Photochemistry and Photobiology Polish Journal of Chemistry

Polymer Journal

Proc Acad Sci USSR, Chem Sec

Proc Chem Soc Proc Ind Acad Sci A

Proc Natl Acad Sci USA

Pure Appl Chem

Quart Rev

Rec Chem Prog Rec Trav Chim

Recl J R Neth Chem Soc Rev Chem Intermed Rev Pure Appl Chem

Rocz

Russ Chem Rev

Soc Chem Ind

Syn

Syn Commun

Tetr TL

Topics Curr Chem Topics Stereochem Trans Faraday Soc Transition Met Chem

Z Chem

Z Naturforsch B

Zh Obshch Khim

Proceedings of the Academy of Sciences of the USSR.

Chemistry Section

Proceedings of the Chemical Society (London)

Proceedings - Indian Academy of Sciences. Section A, Part

1: Chemical Sciences

Proceedings of the National Academy of Sciences of the

United States of America Pure and Applied Chemistry

Quarterly Reviews - Chemical Society, London

Record of Chemical Progress

Recueil des Travaux Chimiques des Pays-Bas

Recueil: Journal of the Royal Netherlands Chemical Society

Reviews of Chemical Intermediates
Reviews of Pure and Applied Chemistry

Roczniki Chemii

Russian Chemical Reviews

Society of Chemical Industry, London Chemical Engineering

Group, Proceedings

Synthesis

Synthetic Communications

Tetrahedron

Tetrahedron Letters

Topics in Current Chemistry
Topics in Stereochemistry

Transactions of the Faraday Society
Transition Metal Chemistry (New York)

Zeitschrift für Chemie

Zeitschrift für Naturforschung. Tiel B: Anorganische

Chemie, Organische Chemie, Biochemie, Biophysik,

Biologie

Zhurnal Obshchei Khimii

CHEMICAL ABBREVIATIONS

Ac Acetyl acac acetylacetonate [CH3COCHCOCH3] N, N'-bis(1-methyl-3-oxobutylidene)ethylenediamine acaen **AIBN** 2,2'-azobisisobutyronitrile [$Me_2C(CN)N = NC(CN)Me_2$] Am amyl aq aqueous Аг aryl 9-borabicyclo[3.3.1]nonyl 9-BBN 9-borabicyclo[3.3.1]nonane [HB])] BINAP 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl bipy 2,2'-bipyridyl Bu butyl c cyclo cat catalytic COD cis,cis-1,5-cyclooctadiene CpCyclopentadienyl Cy cyclohexyl DABCO 1,4-diazabicyclo[2.2.2]octane **DBA** dibenzylideneacetone [PhCH=CHCOCH=CHPh] **DBN** 1,5-diazabicyclo[4.3.0]non-5-ene **DBU** 1,8-diazabicyclo[5.4.0]undec-7-ene DDO 2,3-dichloro-5,6-dicyano-1,4-benzoquinone diop (2,3)-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane **DMAP** 4-dimethylaminopyridine **DME** 1,2-dimethoxyethane **DMF** N, N-dimethylformamide **DMSO** dimethylsulfoxide dppe 1,2-bis(diphenylphosphino)ethane [Ph, PCH, CH, PPh,] E+ electrophile **EDA** ethylenediamine [H2NCH2CH2NH3] **EDTA** ethylenediaminetetraacetate Et ethyl fod 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato [CF,CF,CF,COCHCOC(CH₃)₃] Fp dicarbonyl(n5-cyclopentadienyl)iron(I) [Fe(CO)₂(cyclopentadienyl)] Het heterocycle HMPA = HMPThexamethylphosphoramide

iso L ligand LDA lithium diisopropylamide [LiN(i-C₃H₇)₂] meta m methyl Me Mes mesityl N-methylsalicylaldimine mesal Ms methanesulfonyl normal **NBA** N-bromoacetamide norbornadiene **NBD NBS** N-bromosuccinimide NCS N-chlorosuccinimide NIS N-iodosuccinimide Nuc nucleophile ortho para POS pyridinium chlorochromate PDC pyridinium dichromate PEG-400 poly(ethylene glycol)-400 phenyl 1,10-phenanthroline phen PPA polyphosphoric acid Pr propyl рy pyridine R an organic group $\mathbf{R}_{\mathbf{f}}$ perfluoroalkyl Salen N, N'-ethylenebis(salicylideneiminato) salophen o-phenylenebis(salicylideneiminato) sec secondary 1,2-dimethylpropyl [(CH₃)₂CHCHCH₃] Sia S,S-chiraphos (S,S)-2,3-bis(diphenylphosphino)butane [(S,S)-Ph₂PCH(CH₃)CH(CH₃)PPh₂] tertiary Tf trifluoromethanesulfonyl THF tetrahydrofuran THP 2-tetrahydropyranyl **TMEDA** N, N, N', N'-tetramethylethylenediamine [Me₂NCH₂CH₂NMe₂] Tol tolvl tolbinap 2,2'-bis(di-p-tolylphosphino)-1,1'-binaphthyl Ts p-toluenesulfonyl

CONTENTS

LITERATURE ABBREVIATIONS xxix CHEMICAL ABBREVIATIONS xxxiii

ALKANES AND ARENES 1 GENERAL REFERENCES 3

1	REDI	JCTIO	N F
1.	NEU	וטווטנ	N 5

- 1. Cyclic Alkanes 5
- 2. Arenes 5
- 3. Alkenes 6
 - 3.1. Catalytic Hydrogenation 6
 - 3.2. Diimide Reduction (HN=NH) 8
 - 3.3. Hydroboration-Protonolysis 8
 - 3.4. Transition Metal Salts and Metal Hydrides 8
 - 3.5. Miscellaneous Reagents 8
 - 3.6. Conjugate Reduction 8
- 4. Alkynes 17
 - 4.1. Catalytic Hydrogenation 17
 - 4.2 Hydroalumination-Protonolysis 17
 - 4.3. Miscellaneous Reagents 17
- 5. Organic Halides 18
 - 5.1. Low-Valent Metals 18
 - 5.2. Metal Hydrides 19
 - 5.3. Miscellaneous Reagents 20
- 6. Amines 24
- 7. Nitro Compounds 26
- 8. Ethers 26
- 9. Alcohols and Phenols 27
 - 9.1. Direct Reduction 27
 - 9.2. Via Phosphorus Compounds 28
 - 9.3. Via Sulfonates 28
 - 9.4. Via Other Derivatives 30
- 10. Sulfur Compounds 31
- 11. Selenium Compounds 35
- 12. Aldehydes and Ketones 35
 - 12.1. Direct Reduction 35
 - 12.2. Via Hydrazones 37
 - 12.3. Via Oxygen and Sulfur Derivatives 38
 - 12.4. Via Selenium Derivatives 38
 - 12.5. Decarbonylation 38

	Contents
	12.6. Ketone Cleavage 39 12.7. Reductive Coupling 39 13. Carboxylic Acids 40 14. Acid Halides 40 15. Esters 41 16. Nitriles 42
2.	1. Symmetrical or Intramolecular Coupling 45 2. Unsymmetrical Coupling 49 2.1. Organolithium Reagents 49 2.2. Grignard Reagents 57 2.3. Organoboron Reagents 57 2.4. Organoaluminum Reagents 57 2.5. Organothallium Reagents 57 2.6. Organosilicon and -tin Reagents 58 2.7. Organolead Reagents 58 2.8. Sulfur, Selenium and Phosphorus Reagents 58 2.9. Organotitanium and -zinc Reagents 60 2.10. Organochromium Reagents 61 2.11. Organomanganese Reagents 61 2.12. Organoiron Reagents 62 2.13. Organonickel Reagents 62 2.14. Organopalladium Reagents 63 2.15. Organocopper Reagents 65 2.16. Organomercury Reagents 67 2.17. Miscellaneous Reagents 67
3.	FRIEDEL-CRAFTS AND RELATED ALKYLATION REACTIONS 69
4.	RING-FORMING REACTIONS 71 1. Three-Membered Rings 71 2. Four-Membered Rings 82 3. Five-Membered Rings 85 4. Six-Membered Rings 86 5. Various Ring Sizes 87 5.1. Carbocationic Cyclization 91
_	

5. AROMATIZATION 93

- 1. Dehydrogenation 93
- 2. Elimination 97
- 3. Reductive Elimination 98
- 4. Rearrangement 98
- 5. Cyclization and Annulation 98
- 6. Diels-Alder and Related Reactions 101

ALKENES 105 GENERAL REFERENCES 107

1. ISOMERIZATION OF ALKENES 109

- 1. Alkene Inversion 109
- 2. Simple Rearrangement 110
 - 2.1. Thermal 110
 - 2.2. Photochemical 110
 - 2.3. Base-Promoted 111
 - 2.4. Acid-Catalyzed 112

- 2.5. Sulfur Dioxide 112
- 2.6. Ene Reaction-Reduction 112
- 2.7. lodine 112
- 2.8. Transition Metal-Catalyzed 112
- 2.9. Organoboranes 114
- 2.10. Addition-Elimination 114
- 3. Functional Group Rearrangement 114
- 4. Reductive Transposition 115
- 5. Oxidative Transposition 116
- 6. Heteroatom Displacement 118
- 7. Ene Reaction 119
- 8. Alkylative Transposition 119

2. ELIMINATION

- 1. Dehydrogenation 129
- 2. Dehydrohalogenation of Alkyl Halides 131

129

- 3. 1,1-Dihalides 133
- 4. 1,2-Dihalides 133
- 5. B-Halo Ethers 136
- 6. Halohydrins 137
- 7. β-Halo Esters 138
- 8. β-Halo Mesylates 139
- 9. Amine Oxides (Cope Elimination) 139
- 10. Quaternary Ammonium Salts 139
- 11. N-Alkyl-N,N-Disulfonimides 140
- 12. Diazo Compounds 140
- 13. Deoxygenation of Epoxides 140
 - 13.1. Inversion 140
 - 13.2. Retention 141
 - 13.3. Non-stereospecific or Unknown Stereochemistry 142
- 14. β -Mesyl or Thio Esters 143
- 15. Sulfides 143
- 16. α-Halosulfides 143
- 17. β-Halosulfides 143
- 18. β-Hydroxysulfides 143
- 19. Sulfoxides 144
- 20. β -Hydroxysulfoxides 145
- 21. Sulfones 145
- 22. α-Halosulfones (Ramberg-Bäcklund Reaction) 146
- 23. B-Hydroxysulfones 146
- 24. β-Acyloxysulfones 147
- 25. β-Nitrosulfones 147
- 26. β-SilvIsuIfones 147
- 27. Disulfones 147
- 28. β-Hydroxyselenides 148
- 29. β-Oxoselenides 148
- 30. Selenoxides 149
- 31. Tellurides 151
- 32. β-Halosilanes 151
- 33. β-Oxysilanes 151
- 34. Dehydration of Alcohols 151
- 35. Sulfonate Ester Eliminations 153
- 36. Xanthate Pyrolysis (Chugaev Elimination) 154
- 37. p-Tolylthiocarbonate Pyrolysis 154
- 38. Carbamate Pyrolysis 154
- 39. N-Methyl-4-Alkoxypyridinium lodide Pyrolysis 154

Contents
40, 1.2 Diolo 155
40. 1,2-Diols 155
40.1. Stereospecific cis Elimination 155 40.2. Non-stereospecific or Unknown Stereochemistry 155
41. 1,2-Dimesylates 156
42 1 2 Diolo 156
43. Acetals 157
44. Dithioacetals 157
45. Aldehydes and Ketones 157
45.1. Direct Elimination 157
45.2. Tosylhydrazone Elimination (Bamford-Stevens) 158
45.3. Shapiro Reaction 158
45.4. Enone Conversions 158
45.5. Reduction of Carbonyl Derivatives 160
45.6. Dimerization of Aldehydes and Ketones 160
45.7. Miscellaneous Reactions 162
46. Carboxylic Acids 162
47. Acid Halides 164
48. Acid Anhydrides 164
49. Esters 165
50. Nitriles 166
51. Miscellaneous Reactions 166
3. ALKYLIDENATION OF CARBONYL AND RELATED COMPOUNDS 167
4. WITTIG AND RELATED REACTIONS 173
1. Wittig Reaction 173
1.1. General 173
1.2. Intramolecular Wittig 174
1.3. Mechanism 174
1.4. Miscellaneous Reactions 174
2. β-Oxido Ylids 176
3. Ph ₃ P=CHLi 176
4. Phosphonates 176
4.1. General 176
4.2. Intramolecular 176
5. Phosphonic Acid bis Amides [(R ₂ N) ₂ POCHLiR] 177
6. Phosphinothioic Amides [PhPS(NR ₂)CHLiR] 177
7. Phosphine Oxides 177
8. Arsenic Ylids 178
9. Sulfinamides 178
10. Tellurium Compounds 178
11. Boron Anions 178
12. Peterson Reaction (Oxysilane Elimination) 178
13. Isonitriles 180
14. Miscellaneous Reactions 180
5. METAL-PROMOTED COUPLING REACTIONS 185
5. METAL-PROMOTED COUPLING REACTIONS 185 1. Lithium Reagents 185
2. Grignard Reagents 191
3. Boron Reagents 192
4. Aluminum Reagents 193
5. Thallium Reagents 193
6. Silicon, Germanium and Tin Reagents 1937. Selenium Reagents 197
· colellan pagetts 197

8. Titanium Reagents 1979. Zirconium Reagents 19710. Iron Reagents 197