Fortran for Students

Roéer Hutty

Fortran for Students

Roger Hutty
School of Mathematics, Computing an"(‘!—%t'gtist’igsy
Leicester Polytechnic e

© Roger Hutty 1980

All rights reserved. No part of this publication may be reproduced or
transmitted, in any form or by any means, without permission.

First published 1980 by

THE MACMILLAN PRESS LID

London and Basingstoke

Associated companies in Delhi Dublin -

Hong Kong Johannesburg Lagos Melbourne
New York Singapore and Tokyo .

Printed in Hong Kong

ISBN 0 333 25331 0

This book is sold subject to the standard conditions of the Net Book Agreement.

The paperback edition of this book is sold subject to the condition that it shall
not, by the way of trade or otherwise, be lent, resold, hired out, or otherwise
circulated without the publisher’s prior consent in any form of binding or cover
other than that in which it is published and without a similar condition including
this condition being imposed on the subsequent purchaser.

Preface

This learning text, based on FORTRAN 66, - the ANSI X3.9-1966 FORTRAN
standard enables a student to develop through suitable exercises

and programming practice a professional approach to programming

and- produce a work of quality. There is an art to programming: it

is not enough for a student to know the rules of a language, it is
equally important to develop a readable and intelligible program
"which has style and uses the best techniques.

The text is in the form of short narratives; each narrative
covers one or two concepts and is followed by an exercise. The
narratives move fast, the exercises are challenging and they
encourage students to make many discoveries for themselves, thercby
allowing the rapid development of skills., "Every opportunity is
taken to expose practical problems and develop good programming
habits right from the start.

The text includes som¢ opinions and opposing views for : iscussion,

Most of the facilities specified in the FORTRAN 66 standard
are included in the text.

The. main changes specified by the FORTRAN 77 (ANS] X3,9-1978)
standard are included in the text as amendments at the end of each
chapter. This way of including FORTRAN 77 was chosen because it
will be several years before all of the facilities specified in
the standard are available on all computer systems.

The text can be used with the computer systems of all the
major manufacturers.

It is suitable for BSc and HND courses in Computing, Mathematics
and Engineering and as a reference book for practising FORTRAN
programmers. .

NOTES FOR TUTORS

The text is divided into chapters., A chapter can be used as a
self-contained unit for teaching purposes to be used for one or two
weeks' lectures and tutorials or one self-instructional unit,

Each chapter assumes a student has satisfactorily completed the
previous chapters,

The book is not an ordinary text book - it is a learning text.
The narratives, the exercises, the exercisc answers and the
program at the end of each chapter all play an equally important
part in the learning process, The narrative is fast moving. The
exercises have been chosen to be a real test of the student's
understanding of both concept and detail and to extend, sometimes
by discovery, the knowledge and understanding gained in the
narrative. Some of the exercise answers include notes on the
answers which also extend a student's knowledge and understanding.
A program is specified at the end of each chapter for the student
to code, run and test on a computer system. Each program is
designed, as far as is possible, to include the concepts contained
in- the -chapter.

Students should be encouraged to do the exercises when they are
encountered and before continuing with the text. Additionally,
the programs should at least be coded befoie continuing with the
next chapter, e

Many students will be able to work through the text without
assistance, allowing the ‘tutor to concentrate his attention on
those students who are unable to complete the text on their own.

The whole text is designed on the premise that one sure way to
learn a’ programming language is by plenty of practical experience.
That 'is one reason why practical exercises have been inserted
throughout the text and a program included at the end of each
chapter. The text is also designed so that students can code and
run programs at the eariiest possible stage in a course.

Only one program is specified at the end of each chapter so
that the student can concentrate his effort on that one program,
It is important that the student be encouraged to produce a fully
correct working version of each program - one which adheres exactly
to the program specification. Students should present only
correctly working programs for assessment so that the tutor can
concentrate on the style and technique of the programs. If
necessary, the programs can be replaced by other programs specified
by the tutgor for specialist courses, although the programs in the
text have been carefully chosen to cover as many aspects of computing
as possible.

Instead of covering all of a topic at once, most topics are
spread over a few chapters and each chapter covers parts of a few
topics. This enables students to write more relevant programs
earlier in a course and it makes the text more interesting thereby
helping a student's concentration. Additionally, because a topic
is spread throughout the text, a student has time gradually to
assimilate the concepts contained within a topic and to absorb
each concept before proceeding to the next.

viii

The text is machine independent and follows the FORTRAN 66
standard. Where the standard allows for in.erpretation by
computer manufacturers, common variations are treated. The COMMON
and EQUIVALENCE statements are covered only briefly in the text
because of their higher level nature and complexity in being used
correctly. It is felt, also, that these two statements and the
facilities which they provide are best explained in a 'chalk and
talk' situation. The COMPLEX facility is not covered in the book
because of its specialist nature.

The FORTRAN 77 standard amendments appear at the end of each
chapter. Some computer systems already support some of the amend-
ments. It will take several years for all computer systems to have
full FORTRAN 77 standardisation. In the meantime, tutors should
inform their students which facilities specified in the text are
currently available on the computer system they are using.

One problem encountered by tutors teaching programming
languages to a group of students is the wide variation in the
students' rates of learning the language - even groups of students
with the same background. Consequently, a favoured method of
teaching programming languages is by tutor-assisted self-instruc-
tional methods, so that students may learn at their own rate and
not become bored or lost. This text is particularly suitable for
such a course - in fact, part of the text has been used as such
for a few years.

It will be necessary for the tutor to introduce the students
to the particular computer they will be using and to tell.them
the procedures for using it. If the computer system provides an
equivalent choice between batch and terminal use, .students should
use the batch initially because, although terminals certainly
motivate students, they also encourage very poor programming style
and technique. Students can equally well be motivated by a good
batch facility.

NOTES FOR STUDENTS

The text is not intended as a beginners' teach-yourself text, It
is intended to accompany a course of lectures or be used as the
text for a tutor-assisted self-instructional course,

‘However, it is suitable as a teach-yourself text for students
who already have an appreciation of computer programming,. or who
already know a little FORTRAN. Practising FORTRAN programmers
may find the text useful for reference purposes, especially the
FORTRAN 77 amendments at the end of each chapter.

. There 1s only one way to learn a programming language thoroughly
and that is to have plenty of experience in using it - just like
learning a foreign language. Proficiency in FORTRAN is acquired
by writing it. This text contains many exercises which call for
written answers; it is essential that you do write down the
answers. Eager students are sometimes tempted to answer the
questions mentally in their impatience to make progress with the
subject. Resist this temptation!

ix

All exercises should be attempted as you encounter them and.»
before continuing with the text. The answers to exercises ghould
be written down and checked with the answers given at the end of
the book. Some answers include additional information.

If you are unable to answer a question, read the relevant parts
of the text again. If you get stuck, or if there is a point that
is not clear, ask your tutor.

At the end of each chapter there is a program specification,
The program should be coded, run and tested, preferably before
passing on to the next chapter, although this may not be practicable;
however, the program should at least be coded before looking at
the next chapter. The program should be a fully correct working
version which adheres exactly to the specification. A program is
no use to anyone if it does not do exactly what is required of it.

The main text adheres to the FORTRAN 66 standard. Amendments
specified in the later FORTRAN 77 standard are included at the end
~of each chapter, The computer system you are using may not support
all, or any of the amendments - you should check with your tutor
which facilities are available on your computer system.

ACKNOWLEDGEMENTS

My thanks to Arthur Radford, for checking my FORTRAN; Roger Barnes,
for checking my English; Peter Leadbetter for checking the final
text; Leicester Polytechnic Computer Centre for allowing me to use
their computer facilities for the testing and production of the
programs in the book; and last, but not least, my wife, Susan, for
her support in many ways, particularly in the typing of the draft
and final copy of the text.

Roger Hutty

Contents

Preface vii
1 Introduction 1
1.1 Computer Systems 1
1.2 Programming 1
1.3 A simple FORTRAN program 3
1.4 Real constants and variables S
1.5 Arithmetic assignment statements 6
Program 8
2 Integers, the IF and GOTO fSt@tenents 9
2.1 Integer constants guéRuarlBKBRs 9
2.2 Integer arithmétic jssignment statemgpts 9
2.3 Integer input and outpurt 10
2.4 IF and GOTO statemen®s fpd TelarTion@l expressions 11
2.5 Text output . 15
2,6 Statements 15
2.7 FORTRAN 77 16
Program 18
3 Looping 19
3.1 Looping and the DO and CONTINUE statements 19
3.2 Output layout : . 24
3.3 FORTRAN 77 . 25
Program - 26
4 Arrays 28
4.1 Arrays } - 28
4.2 Use of / in a FORMAT statement ' 31
4.3 Implied-DO lists ' o 33
4.4 FORTRAN 77 34

Program EEPEE ; 35

OO E NN -

5
5
5
5
5.
S
5
5
P

6.1
6.2
6.3
6.4
P

Functions

Basic external functions
Intrinsic functions
Successive approximations
Nested DO loops

Array subscript expressions
Sorting

Decimal exponent values
FORTRAN 77)

rogram

Two-dimension arrays

Two-dimension arrays

Input and output of 2-D arrays
Group format specification
FORTRAN 77 .

rogram

7 Procedures

Procedure concepts

Statement functions

Function subprograms

Subroutine subprograms
Comparison and use of procedures

rogram : :

8 Character handling, DATA and Type-statements

8.1 Character handling -
. 8,2 The DATA'sg?tement
" 8.3 Type-statements -

8.4 Precision

8.5 FORTRAN 77

Program

9 The Computed GOTO, logical and Arithmetic IF statements

The Computed GOTO statement

Logical expressions

Logical statements

Input and output of logical variables
The Arithmetic IF statement

FORTRAN 77

10 The COMMON and EQUIVALENCE statements

10.1 The EQUIVALENCE statement
10.2 The COMMON statement

Exercise Answers

Index

vi

1 Introduction

1.1 COMPUTER SYSTEMS

Computing, like many other processes, has three main parts

input #4 processing output

In a computer system, data (numbers and words) is input by an
input device, the processing is performed by a central processing
unit and data is output by an output device.

A computér system can have many different types of device but -
as far as FORTRAN programming is concerned the computer system
can be as simple as

card reader central processing unmit line printer

) A card reader is used to input programs, and data for the
programs. A program is a list of statements.to tell the computer
what to do during the processing stage. A line printer is used to

output information, such as results from a program.

‘Exercise 1,1)
Which input device is used for FORTRAN and what is its purpose?

1.2 PROGRAMMING

It takes several stages to get from the specification of a.problem
to a correctly working program in a computer,

(1) A computer solution of the problem has to be converted to a
) FORTRAN program and written on a coding form - see Figure 1,1,

(2) The program and data are punched on to cards - see Figure 1,2.

1°1 san3t4

s

] -\n~'~nnah; roa 9T ST BEL € (4044 (R1 o194 (24 16 24504 (74 (24 (24 144 3 4 N._n_h_o.w.v_n_”“_.o_r
CES EEIEEERN
\ S| 1 AN
1 5 1T 1P
; o QBRI SEE TR Mo
| BECURGNEIEL CERY I GNERE Dt
i W3] BV WS BBEA
Z [WS] FnMIILMofo
)) (TP PRVWSHW AlS=Mn
5 W SNOSENIENR
< .) *B=;
WS . i N REE G
912 Piytest [Cla]] Tsh
Wl (LS Pildloils| INo[ZISMF
hs\m. mnm :”M: izfozlsokeafe & It sfesfes) L [Befcx|9efosivejee|ee | efoclotlez|caforselve|etfezfizfoe)e e to;_!_::: o._m [
[a1va] axa ALLNH] wacuxuwz_

[2ove 4504 sova] "qwod ™ wowx| Syp¥w INFQNLs s
W¥0d4 INIG0D

148 _hall $.2 9,0 2,2

/anALA
L LMD sm
an AR,
S10P
FSeojsFegl) -1l 108
MRETF (4330) SHABRIAVRAGE HL
AYRAGE=SUM/S .0 =Ll
oM
SMARK (L) S*
Uy 28 1al3s Sk
/A PITL ™ N FL) 4p
10 FURMAT(BF»,0) PL] _Jd0
19) SHANK s~
oll‘.slou SMARK (3 se
n | I
58 0 3 1
.lllllllll...lll'lllll'lllllllllllllll'lllnl.l‘dnlllllllllvuﬂlll.ll’ﬂﬂ!llll‘lll'
RN NOURENENNNUDIEARTRAABRLUINERT B HGULINOQCG U AN UNNBYANBEVHNORVEBN LI NAREIRDN

||||||||II|||I|II|'|II"llllllllll'lIllllli'lil‘llllllllllIlllllll|l|ll||l’|||

mnunninabhimbnnnanauanaunannnanne s anbin
31339303331330333330333337333333333333333333333333332331300333933333333331333333
staanalalrcanacaaencancecaanenaqetstcastqatctciriaatstasacecarsqaceacccralianane
5599888 sshlsoslos s s oMMl ss86855858550585588565656655555558565§8558668588586688
$e06r08ssesBE6eG6666i665066666666666 666666065 6666666565666666666666666566660666
R R RN R NI R R R RN R R RN R RN N RN RN R RN R R RN R RN NN NNRRRRRR AR
pansnanosntnnaanas s oo o u o eus s 00t s s oo ns e astIT e rIRIeINTRIRsETRIINRItINY

12103818 8R0UNNABURNNNNINNNININY

Figure 1.2

(3) The cards are input by the card reader and the program is
stored in the central processing unit where it is compiled.
During compilation a FORTRAN program is converted into
machine code - an equivalent set of instructions, but simple
ones, which the computer is able to execute.

(4) The program is now executed (or run). The data cards will
be input by the card reader, the calculation will be performed,
and the results will be output to the line printer.

It is quite usual to have to go back a stage or more because of
errors. It is rare even for a professional programmer to get
through all stages in one go and produce a completely error free
program which exactly solves the problem. Such is.the preciseness
of programming!

Exercise 1.2
why does a FORTRAN program have to be compiled?

1.3 A SIMPLE FORTRAN PROGRAM

We shall now look at a simple FORTRAN program statement by state-
ment. Program 1,1 calculates the area of a rectangular shape given
the height and the width. You will find it helpful to copy the
program on to a coding form and have it by your side whilst we go
through the program.

i2 —

program [:[2]:]4fs 6';[: 9 |ol|l|2|1ullsllo 17{18fis]aofaifzz|23a4as|eshi7]aefsfsofa 52faads4
11 Rietalcis], T oD THlelTielHiT], hlripirn
LA |FiolRMATI([Fi6]. I#], IFie]. [g])
|ARlEiAl HIET Ak tul
106l 21gD| |Hefricluir], MriDITIHE AR [EIA
“12lg] IFoRMAITICli M | IFi8]. (2], [Flgl. 21, Fli 2. [3D
ksirlolp
FND .
DA[TIA
input 3l 8l. |25
L-—"l‘— h‘“\.

~ The first statement - the READ statement - instructs the
computer to input two values from a data card; one value for the
variable called HEIGHT and a second value for the variable called
WIDTH.

The number 5 in the READ statement informs the computer that
the data is to be input from device number five. Each device in a
computer system is identified by an unique number. We are assuming,
here, that the card reader is device number five - you must use
your computer system's card reader nuuber,

The number 10 in the READ statement specifies the number of the
FORMAT statement to be used when reading the data. The FORMAT
statement contains a field descriptor for each variable in the
READ statement, The first field descriptor F6,0 informs the
computer that the value of the first variable, HEIGHT, is real
(has a decimal point) and is punched in the first six columns of
the data card. The second field descriptor F6.0 indicates that
the second variable, WIDTH, is also real and is in the next six
columns of the card. ’

After execution of the READ statement HEIGHT will have a value
of 3.5 and WIDTH a value of 8,25.

When forming a field descriptor, the number of columns allecated
must allow for the maximum possible number of integral and fractional
digits plus a decimal point character and a possible sign character.

Exercise 1.3

Write a READ and a FORMAT statement which could be used to input
three variables A, B and C. Values for A and B are in the range
0.01 to 9999.99 and the value for C is in the range -99.9 to
+99.9.

The assignment statement AREA=HEIGHT*WIDTH instructs the computer
to multiply the value of HEIGHT by the value of WIDTH and assign
the result to the variable AREA. So after execution of this state-
ment AREA will have the value 28.875.

The WRITE statement instructs the computer to output the values
of the three variables HEIGHT; WIDTH and AREA. The number 6
informs the computer that the values are to be output to device
number six, which we will assume is the line printer.

The number 20 indicates that the FORMAT statement numbered 20
is to be used with this WRITE statement, The first field descriptor
1Hb instructs the computer to write on the next line of the paper
in the line printer. The letter b is used throughout the text to
indicate a blank (space). The next fiéld descriptor F8.2 indicates
that the value of the first variable HEIGHT is to be output as a
real number with two decimal places in the first elght character
positions - similarly for the second field descriptor F8,2 and
the variable WIDTH. The last field. descriptor. F12.3 indicates that
the value of the variable AREA is to be output as a real number
with three decimal places in the next twelve character positions.

.Exercise 1.4
Write a WRITE and a FORMAT statement to output the varlables A, B
and C of the previous exercise.

The STOP statement stops the execution of the program. A STOP
statement need not necessarily be at the end of a FORTRAN program,
as you will see later.

The END statement informs the compiler that there are no more
FORTRAN statements to be compiled. There is only one END statement
in a FORTRAN program, and it must always be the last statement.

The *DATA statement is not a FORTRAN statement, It is a system
statement used to separate a program from its data, It varies from
one computer system to another - you will have to find out what to
put here for the computer system you are using.

The data which is to be input by a program follows the *DATA
statement,

When writing a FORTRAN statement on a coding form you should
start it in column 7. Statement numbers, for those statements
which need one, should be in columns 1 to 5, and right-justified.

1.4 REAL CONSTANTS AND VARIABLES

A real constant is a number with a decimal point - at this stage
you must always write a real constant whenever a number is required.
No commas are written in real constants and there must be no spaces
between the digits.

Look at the following e*amples

2,0 823.6 0,43 25875.0 0.0

Exercise 1.5
Write the numbers 76 55,760.72 1 and 67% as real constants.

A variable name consists of from one to six letters or digits,
the first of which must be a letter. The first letter of a real
variable name must not be any of the letters I,J,K,L,M or N. You
must use real variable names at this stage.

Exercise 1.6
Which of the following are valid real variable names?

LENGTH PAGE1 AVERAGE 2ND 'NUMBER ADRESS

Within the rules given, you are free to choose your own names,
However, your choice of names can make- a great deal of difference
to the intelligibility of your programs. A name shouldindicate
the use of a variable. For example, SALARY=WAGE*HOURS conveys
much more information than SA=W*H. Do not use names in the same .
program which are likely to. cause confusion due to their similarity,
such as, SUM and SUN.

1.5 ARITHMETIC ASSIGNMENT STATEMENTS
An arithmetic assignment statement is constructed as follows
variable =.arithmetic expression

When the statement is executed the arithmetic expression is evaluated
and the result is assigned to the variable.

An arithmetic expression consists of variables and operators.
The operators available are
+ addition
- subtraction
* multiplication
/ division
** exponentiation
An example of an arithmetic assignment statement is

RESULT=A-B/C*D

To human beings this statement would be ambiguous. The arithmetic
expression could be interpreted as

a-b
cxd

b - b (a - b)
or a '[E x ﬂ or a - - or < x d
In FORTRAN, ambiguity is avoided by a few rules governing the
order in which operators are evaluated.

First, operators are evaluated in the order

first * %
second * and /
third + and -

Secondly, if an expression contains more than onre operator from
the same group they are evaluated in order from left to right.

Exercise 1.7
How will the expression in the statement above be interpreted?

Thirdly, parentheses may be used.to override the order of
evaluation because expressions in parentheses are evaluated first.
Expressions within parentheses are evaluated according to the two
rules given above. If there are parenthesised expressions within
parenthesised expressions then the innermost parenthesised expre-
ssions are evaluated first.

Three points to note are: the * operator must always be used
when multiplication is required; two operators cannot be next to
each other, so that, for example, you must write VALUE**{-2.5);
if an exponent is a whole number as, for example, X**2 it may be
written without the decimal point.

Exercise 1.8
Write FORTRAN expressions to compute the following

3 2 -
(1) (x+y (2) - b+ /(b - dac) (3) (1 +)P
X + z 2a p(p - 1)

When a value has been assigned to a variable it may be used
later on in a program. Look at Program 1.2,

program READ(5,10) X1,X2,X3
1.2 10 FORMAT(3F5.0)
SUM=X1+X2+X3
SQASUM=SUM*SUM)
WRITE(6,20) X1,X2,X3,SUM,SQSUM
20 FORMAT(1H ,3F5.1,F8.1,F14.1)

STOP
END

input 25.2 55.7¢-89.3
output 23.2.55.7 38%.3 168.2 28291.2

The sum of the three numbers is assigned to the variable SUM
which is then used in the next statement to compute the square of
the sum SQSUM. Notice the shorthand way of writing identical
consecutive FORMAT field descriptors - 3F5.0 is equivalent to
writing F5.0,F5.0,F5.0.

Exercise 1.9 .

Write a program which inputs the diameters of two concentric
circles and outputs the area of each circle and the area between
the circles. .

PROGRAM
The area of a triangle with sides of length a, b and c can be
calculated using the formula '

a+b+c
2

Write a program which inputs the lengths of the three sides of
a triangle, calculates the area and finally outputs the three
lengths and the area.

area = /(s(é.— a)(s - b](s - ¢)) where s =

The three lengths should be on one data card and the progfam
-should allow for each length to be in the range 0.1 to 9999.9.

