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‘Preface

L4

A mathematical theory of hypothesis testing in which tests are
derived as solutions of clearly stated optimum problems was developed
by Neyman and Pearson in the 1930’s and since then has been con-
siderably extended. The pufpose of the present book is to give a sys-
tematic account of this theory and of the closely related theory of con-
fidence sets, together with their principal applications. These include
~ the standard one- and two-sample problems concerning' normal, bi-

nomial, and Poisson distributions; some aspects of the analysis of vari-
ance and of regression analysis (linear hypothesis); certain multivari-
ate and sequential problems. There is also an introduction to non-
parametric tests, although here the theoretical approach has not yet
been fully developed. One large area of methodology, the class of
methods based on large-sample considerations, in particular x? and like-
lihood ratio tests, essentially has been omitted because the approach

- and the mathematical tools used are so different that an adequate treat-

- men would require a separate volume. The theory of these tests is only
briefly indicated at the end of Chapter 7. :

At present the theory of hypothesis testing is undergoing important
changes in at least two directions. One of these stems from the realiza-
tion that the standard formulation constitutes a serious oversimplifica-
tion of the problem. The theory is therefore being re-examined from
the point of view .of Wald’s statistical ‘decision fun€tions. Although
these investigations throw new light on the classical theory, they essen-
tially confirm its’ findings. T have retained the Neyman-Pearson formu-
lation in the main part of this book but have included a discussion of
the concepts of general decision theory in Chapter 1 to provide a basis
for giving a broader justification of some of the results. It also serves
as a background for the development of the theories of hypothesis test-
ing and confidence sets.

vii !



viii . PREFACE

Of much greater 1mportance is the fact that many of the problems,

which traditionally have been formulated in terms of hypothesis testing, -

are in reality multiple decision problems involving a choice betwee
several decisions when the hypothesis is rejected The development of
suitable procedures for such problems is at present one of the most 1m-
portant tasks of statistics and is finding much attention in the current
literature. However, since most of the work so far has been tentative,
I'have preferred to present the traditional tests even in cases in which
the majority of the applications appear to call for a more elaborate pro-
. cedure, adding only a warning regarding the limitations of this ap-

-proach. Actually, it seems likely that the tests will remain useful be-

cause of their simplicity even when a more complete theory of multiple
“decision methods is available.

The natural mathematical framework for a systemauc treatment of

- hypothesis testing is the theory of measure in abstract spaces. Since’

introductory courses-in real variables or measure theory frequently pre-
" sent only Lebesgue measure, a brief orientation with regard to the ab-
stract theory is given in Sections 1 and 2 of Chapter 2. Actually, much
_of the book can be read without knowledge of measuré theory if the
symbol [ p(x) du(x) is interpreted as meaning either [ p(x) dx or

Sp(x), and if the measure theoretic aspects of certain proofs together -

with all occurrences of the letters a.e. (almost everywhere) are ignored.

With' respect to statistics, no specific requirements are made, all statis-

tical concepts being developed from the beginning. On the other hand,
* since readers will usually have had previous experience with statistical
methods, applications of each method are indicated in general terms
but concrete examples with data are not included. These are available
in many of the standard textbooks.

"The problems at the end of each chapter, many of them with outlines
of solutions, provide exercises, further examples, and introductions to
some additional topics. ~There is also given at the end of each chapter
an annotated list of references regarding sources, both of ideas and of
specific results. The notes are not intended to summarize the principal
results of each paper cited but merely to indicate its significance for

the chapter in question. In presenting these references I have not

aimed for completeness but rather have tried to give a usable guide to
the literature.

An outline of this book appeared in. 1949 in the form of lecture
nbtes taken by Colin Blyth during a summer course at the University «
of California. Since then, I have presented parts of the material in
courses at Columbia, Princeton, and Stanford Universities and several
times at. the University of California. , During these years I greatly

>
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benefited from comments of students and I regret that I cannot’ here
thank ‘them individually. =At different stages of the writing I received
many helpful suggestions from W. Gautschi, A. Hgyland, and L. J.

» Savage, and particularly from Mrs. C. Striebel, whose critical reading
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‘% CHAPTER 1
The Gene'ral Decision Problem.

1. STATISTICAL INFERENCE AND STATISTICAL
DECISIONS |

_ The raw material of a statistical investigation is a set of observations;
these are the values taken on by random variables X whose distribution
P, is at least partly unknown. Of the parameter 6, which labels the
-distribution, it is assumed known only that it lies in a certain set €, the
parameter space. Statistical inference is concerned with methods of using
this observational material to obtain information concemmg the distribu-
tion of X or the parameter 8 with which it is labeled. To arrive at a more
precise formulation of the problem we shall consider the purpose of the
inference.

The need for statistical analysis stems from the fact that the distribution
of X, and hence some aspect of the situation underlying the mathematical
model, is not known. The consequence of such a lack of knowledge
is uncertainty as to the best mode of behavior. To formalize this,’

- suppose that a choice has to be made between a number of alternative
actions. The observations, by provxdmg information about the distri-
bution from which they came, also provide guidance as to the. best

- decision. The problem is to determine a rule which, for each set of -
values of the observations, specifies what decision should be taken.
Mathematically such a rule is a function 8, which to each possible value
z .of the random variables assigns a decision d = &(x), that is, a fiinction
whose domain is the set of values of X and whose range is the set of
possible decisions.

. In order to see how & should be chosen, one must compare the con-
sequences of using different rules. To this end suppose that the con-
sequence of taking decision d when the distribution of X is P, is a Joss,

=~ .which can be expressed as a nonnegative real number L(6, d). Then

" the long-term average loss that would result from the use of ¢ in a number

of repetitioris 6f the expenmcnt is the expeatation E[L(8, (X))] evaluatcd
: 1

i



2 . THE GENERAL DECISION PROBLEM [1.1

under the assumption that Py is the true dlstnbutxon of X. Thxs expecta-
tion, which depends on the decision rule 8 and the distribution P,, is
called the risk function of 4 and will be denoted by R(f, ). By basing
the decision on the observations, the original problem of choosing a
decision d with loss function (6, d) is thus replaced by that of choosing
d where the loss is now R(0, 6).*

The above discussion suggests that the aim of statistics is the selection
of a decision function which minimizes the resulting risk. As will be
seen later, this statement of aims is not sufficiently precise to be meaningful;

its proper interpretation is in fact one of the basic problems of the theory.

2. SPECIFICATION OF A DECISION PROBLEM ~

The methods requiréd for the solution of a specific statistical problem
. depend quite strongly on the three clements that define it: the class
P = {Py, 0 € Q} to which the distribution of X is assumed to belong;

the structure of the space D of possible decisions d; and the form of the -

loss function L.  In order to obtain concrete results it is therefore necessary
to make specific assumptions about these elements. On the other hand,
if the theory is to be more than a collection of isolated results, the assump-
tions must be broad enough either to be of wide applicability or to define
classes of problems for which a unified treatment is possible.

. Consider first the specification of the class &. Precise numerical
assumptwns concerning probabilities or probability distributions are
usually not warranted.  However, it is frequently possible to assume
that .certain events have equal probabilities and that certain others are
‘statistically independent. Another type of assumption concerns the
relative order of certain infinitesimal. probabilities, for example the
probability of occurrences in an interval of time or space as the length
of the interval tends to zero. The following classes of distributions
are derived on the basis of only such assumptions, and are therefore
applicable in a great variety of situations.

The binomial distribution b(p, n) with

1) P(X=x)=(_:)p‘”(l _,P)n-x’ x=0,n; 0§P§-1-

This is the distribution of the total number of successes in n independent
trials when the probablhty of success for each trial is p.

* Sometimes, aspects of a decision rule other than HiE %‘xpectation of its loss are also
taken into account.

o

“w
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1.2] SPECIFICATION OF A DECISION PROBLEM . ' 3

The Poisson distribution P(7) with
,r’c
2) P(X:x)=;-'ve“’, z=01,-; 0<7.

This is the distribution of the number of events occurring in a fixed
- interval of time or space if the probability of more than one occurrence
. in a very short interval is of smaller order of magnitude than that of a
single occurrence, and if the numbers of events in nonoverlapping intervals
are statistically independent. Under these assumptions, the process
generating the events is called a Poisson process.* ~ ~

* The normal distribution N(£, ¢) with probability density

__1 Ll 2:] —or 0.
(3) px) \/i_;bexp[ 7A@ &2, o<, &<<0;0.<a.
Under very general conditions, which are made precise by the central
limit theorem, this is the approximate distribution of the sum of a large |
number of independent random variables when the relative contribution

- of each term to the sum is small. '

We consider next the structure of the decision space D. The great
variety of possibilities is indicated by the following examples. -

Example 1. Let X;, -, X, be a sample from one of the distributions
(1)~3), that is, let the X’s be distributed independently and identically according
to one of these distributions. Let 0 be p, , or the pair (&, o) respectively, and
let y = y(0) be a real-valued function of 6. o

s’

(i) If one wishes to decide whether or not y exceeds some specified value y,,
the choice lies between the two decisions dy: ¥ >voand dy: 7 = y,. In specific
applications these decisions might correspond to the acceptance or rejection of a
lot of manufactured goods, of an experimental airplane as ready for flight
testing, of a new treatment as an improvement over a standard one, etc. The
loss function of course depends on the application to be made. Typically, the
loss is O if the correct decision is chosen, while for an incorrect decision the
losses L{y, dy) and L(y, d,) are increasing functions of |y — v,l.

(ii) At the other end of the scale is the much more detailed problem of
obtaining a numerical estimate of . Here a decision 4 of the statistician is a
real number, the estimate of y, and the losses might be L(y,d) = v(y)w(ld -9
where w is a strictly increasing function of the error |d - ¥|. . .

(iii) An intermediate case is the choice between the three alternatives do: ¥ < 7o,
dy:y >y, dyt ¥g S ¥ = 9y, for example accepting a new treatment, rejecting it,
or recommending it for further study. :

* Such proces;cs are discussed in the books by Feller, An Introduction to Probability.
Theory and Its Applications, Vol. 1, New York, John Wiley & Sons, 2nd ed., 1957, and
by Doob, Stochastic Processes, New York, John Wiley & Sons, 1953.
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The distinction illustrated by this example is the basis for one of the
principal classifications of statistical methods. Two-decision problems
such as (i) are usually formulated in terms of testing a hypothesis which
is to be accepted or rejected (see Chapter 3). It is the theory of this
class of problems with which we shall be mainly concerned. The other
principal branch of statistics is the theory of point estimation dealing
with such problems as (ii). The investigation of multiple-decision
procedures illustrated by (iii) has only begun in recent years. - :

Example 2. Suppose that the data consist of samples Xy, j =1, -, m,
from normal populations N(¢,,6%), i =1, -, 5. :

(i) Consider first the case s = 2 and the question of whether or not there is a
material difference between the two populations. This has the same structure
as problem (iii) of the previous example. Here the choice lies between the three
. decisions dy: [§; — & = A, dy: & > & + A, dy: & < £ — A where A is pre-
assigned. An analogous problem, involving k& + 1 possible decisions, occurs
in the geperal case of k populations. In this case one must choose between
the decision that the k distributions do not differ materially, dy: max |§; — &] 4,
and the decisions dy: max |£; — &| > A and & is the largest of the means.

(i) A related problem is that of ranking the distributions in increasing order
of their mean §. '

(iif) Alternatively, a standard £, may be given and the probiem is to decide
which, if any, of the population means exceed that standard.. '

Example 3. Consider two distributions—to be specific, two Poisson
didtributions P(r,), P(rp)—and suppose that r; is known to be less that r; but
that otherwise the +’s are unknown. LetZ,, « « -, Z, be independently distributéd,
each according to either P(r;) or P(ry). Then each Z is to be classified as to
which of the two distributions it comes from. Here the loss might be the
number of Z’s that are incorrectly classified, multiplied by a suitable function

-of 7 and 7, An example of the complexity that such problems can attain and
the conceptual as well as mathematical difficulties that they may involve is
provided by the efforts of anthropologists to classify the human population into
a number of homogeneous races by studying the frequencies olP the various
biood groups and of other genetic characters.

All the problems considered so far could be termed action problems.
It was assumed in all of them that if & were known a unique correct
decision would be available, that is, given any 0 there exists a unique d
for which L(0, d) = 0. However, not all statistical problems are so -
clearcut. Frequently it'is a question of providing a convenient summary
of the data or indicating what information is available concerning the
unknown parameter or distribution. This information will be used for
guidance in various considerations but will not provide the sole basis
for any specific decisions. In such cases the emphasis is on the inference
rather than on the decision aspect of the problem, although formally
it can still be considered a decision problem if the inferential statement
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" itself is intei'preted as the decision to be taken. An important class of
such problems, estimation by interval,* is illustrated by the followmg
example.

" Example 4. Let X = (X,, -, X,) be a_sample from N(, ¢%) and let a
decision consist in selecting an mterval [L, L} and stating that it_contains &.
Suppose that decision procedures are restricted to intervals [L(X), L(X)] whose
expected length for all £ and o does not exceed ko where k is some preassigned
constant. An appropriate loss function would be 0 if the decision is correct
and would otherwise depend on the relative position of the interval to the true
value of §&. In this case there are many correct decisions corresponding to a
given distribution N(Z, a®).

It remains to discuss the choice of loss function, and of the three’
clements defining the problem this is perhaps the most difficult to specify.
Even in the simplest case, where all losses eventually reduce to financial.
ones, it can hardly be expected that one will be able to evaluate all the
short- and long-term consequences of an action. 'Frequently it is possible
to simplify the formulation by taking into account only certain aspects
of the loss function. As an illustration consider Example 1(i) and -
let L(8,dy) = a for y(0) < yo and L(6,dy) = b for »(6) > yo. The
risk function becomes

aPe{J(X) do} if '}’<7’o

bPy {8(X) = di} if y >y,

and is seen to involve only the two probabilities of error with weights
which can be adjusted according to the relative importance of these
errors. Similarly, in Example 3 one may wish to restrict attention to the
number of misclassifications.

Unfortunately, such a natural simplification is. not always avadable,
and in the absence of specific knowledge it becomes necessary to select
‘the loss function in some conventional way, with mathematical simplicity
usually an important consideration. In pomt estimation problems
such as that considered in Example 1(G1), if one is interested in estimating
a real-valued function y = y(f) it is customzry to take the square of the
error, or somewhat more generally to put

e - L, d) = o(6)(d — y)*

Besides being particularly simple mathematically, this can be considered
as an approximation to the true loss function L provided that for each
fixed 8, (0, d) is twice differentiable in d, that L(f, ¥(6)) = O for alli 6,
and that the error is not large. )

@ R(5, 8) =

* For the more usual formulation in terms of confidence intervals, see Chapter 3,
Section 5, and Chapter 5, Sections 4 and 5.
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It is frequently found that, within one problem, quite different types

of losses may occur, which are difficult to measure on a common scale.

Consider once more Example 1(i) and suppose that y, is the value of y
when a standard treatment is applied to a situation in medicine, ajri- -

culture, or industry. The problem is that of comparing some new process

with unknown y to the standard one. Turning down the new method

- when’it is actually superior, or adopurg it when it is not, clearly entails
quite different consequences. In such cases it is sometimes convenient

to treat the various components, say Ly, Ly, - *+, L,, separately. Suppose’

-in particular that r = 2 and that L, represents the more serious possibility.
One can then assign a bound to this risk component that is, impose the
condition

© | EL, (X)L o,

and subject to this condition minimize the other component of the risk.
Example 4 provides an illustration of this procedure. The length of
the interval {L, L] (measured in o-units) is one component of the loss
function, the other being the loss that results if the interval does not
cover the true &.

‘

3. RANDOMIZATION; CHOICE OF EXPERIMENT

© The descrlptxon of the general decision problem given so far is still
t00 narrow in certain respects. It has been assumed that for each possible
value of the random variables a definite decision must be chosen. Instead,
it is convenient to permit the selection of one out of a number of decisions
~according to stated probabilitics, or more generally the selection of a
decision according to a probability distribution defined over the decision
space; which distribution depends of course on what z is observed.
One way to describe such a randomized procedure is in terms of a non-

randomized procedure depending on X and a random variable Y whose -

‘values lie in the decision space and whose conditional distribution given
-z is independent of 6. :

Although it may run counter to one’s intuition that such extra randomi-

zation should have any value, there is no harm in permitting this greater
" freedom, of choice. If the intuitive misgivings are correct it will turp
- out that the optimum procedures always are of the simple nonrandomized
kind. Actually, the introduction of randomized procedures leads to
an important mathematical simplification by enlarging the class of risk
functions so that it becomes convex. In addition, there are problems
in which some features of the risk function such as 1ts maximum can be
improved by using a randomized procedure.

v“.
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Another assumption that tacitly has been made so far is that a deginits
experiment has already been decided upon sc that it is known what
observations will be taken. However, the statistical considerations
involved in designing an experiment are no less imuporiant than those
concerning its analysis. © One question in particular that must be decided
before an investigation is undertaken is how many observations should
betaken so that tiie rizk resulting from wrong decisions will net be excessive.
Frequently it turns oui that the required sample size depends on the.
unknown distribution and therefore cannot be determined in advance
as a fixed number. Instead it is then specified as a function of the
observations and the decision whether or not to continue experimentation
is made sequentially at each stage of the experiment on the basis of the
observations taken up to that point. ;

Example 5. On the basis of a sample X;, * - -, X, from a normal distribution
N(§, o%) one wishes to estimate . Here the risk function of an estimate, for
example its expected squared error, depends on ¢. For large ¢ the sample
contains only little information in the sense that two distributions N(%;, 0% and
N(&,, o®) with fixed difference &, — §; become indistinguishable as o — «w,
with the result that the risk tends to infinity. Conversely, the risk approaches
zero as o— O since then effectively the mean becomes kmown. Thus the
number of observations needed to control the risk at a given Ievel is unknown.
However, as soon as some observations have been taken, it is possible to
estimate o and hence to determine the additional number of ‘observations
required.

Example 6. In a Sequence of trials with constant probability p of success,
one wishes to decide whether p < 1/2 or p > /2. It will 'sually be possible to
reach a decision at an early stage if p is close t0 0 or 1 s0 that practically il
observations are of one kind, while a larger satiple wifl be needed for inter-
mediate values of p. This difference may be partialfy batanced by the fact that
for intermediate values a loss resulting from a wrong decision is presumably less
serious than for the more extreme values. ' '

Example 7. The possibility of determining the samiple size sequentially is

- important not only because the distributions Py can be more or 1&ss informative’

but also because the same is true of the observations themselves. Consider,
for example, observations from the uniform distribution* over the interval
(® — %, 6 + 1) and the problem of estimating 8. Here there is no difference in
the amount of information provided by the different distributions Ps. However,
a sample Xy, X;, - - -, X, can practically pinpoint 6 if max | X; — X;| is sufficiently
close to 1, or it can give essentially no more information thap a single observation
if max |X; — X} is close to 0. Again the required sample size should be
determined sequentially. ,

Except in the simplest situations, the determination of the appropriate
sample size is only one aspect of the design problem. In general, one

* This distribution is defined in Problem 1 at the end of the chaptey.
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must decide not only how many but also what kind of observations to

take. Formally all these questions can be subsumed under the general
decision problem described at the beginning of the section, by interpreting
X as the set of all available variables, by mtroducmg the decisions of
whether or not to stop experimentation at the various stages, by specifying
in case of continuance which type of variable to observe next, and by
including the cost of observation in the loss function. - However, in
spxte of this formal possibility, the determination of optimum designs
in specific situations is typically of a higher order of difficulty than finding
the optxmum decision rule for a given experiment, and it has been carried
out in only a few cases. Here, we shall be concerned primarily with

the problem as it presents itself once the experiment has been set up,

and only in a few special cases attempt a comparison,ot‘ different designs.

4. OP’I'IMUM PROCEDURES

- At the end of Section 1 the aim of statistical theory was stated to be
the determination of a decision function 4 which minimizes the risk
function
o . o RO, 8) = E,[L(G 48.9))8 .
. Unfortunately, in general the minimizing 4 depends on 6, which is un-
known. Consider, for example, some particular decision dy, and the
decision procedure d(x) = d, according to which decision d, is taken -
regardless of the outcome of the experiment. Suppose that do is the
correct decision for some 8, so that L(0,, dp) = 0. Then 3 minimizes
the risk at 0, since R(f,, 8) = 0, bus presumably at the cost of a high
risk for other values of 6.

In the absence of a decision function that minimizes the risk for all 6,
the mathematical problem is still not defined since it is not clear what

is meant by a best procedure. Although it does not seem possible to

give a definition of optimality which will be appropriate in all situations,
the following two methods of approach frequently are satisfactory.
_ The nonexistence of gn optimum decision rule is a consequence of the
~ possibility that a procedure devotes too much of its attention to a single
parameter value at the cost of neglecting the various other values that
might arise. This suggests the restriction to decision procedures which
possess a certain degree of impartiality, and the ‘possibility that within
such a restricted class there may exist a procedure with uniformly smallest
risk. Two conditions of this kind, invariance and unbiasedness, will be
discussed in the next section.
Instead of restricting the class of procedures, one cah approach the

'U‘ ;
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