

PROLOG
Programming.

Nigel Ford'
University of Sheffield, UK

JOHN WILEY & SONS _

Chichester - New York - Brisbane - Toronto s _Sﬂ\gapore

Wiley Editorial Offices

John Wiley & Sons Ltd, Baffins Lane, Chichester,
West Sussex PO19 1UD, England

John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, USA

Jacaranda Wiley Ltd, G.P.O. Box 859, Brisbane.
Queensland 4001, Australia

John Wiley & Sons (Canada) Ltd, 22 Worcester Road,
Rexdale, Ontario M9W L1, Canada

i
John Wiley & Sons (SEA) Pte Ltd, 37 Jalan Pemimpin #05-04,
Block B, Union Industrial Building, Singapopre 2057

\

Copyright © 1989 by John Wiley & Sons Ltd.
All rights reserved. ,
No part of this book may be reproduced by any means,
or transmitted, or translated into a machine language
without the written permission of the publisher.
Library of Congress Catsloging-in-Publication Data:
Ford, Nigel.

PROLOG programming / Nigel Ford.

p. cm.

Bibliography: p.

Includes index.

ISBN 0 471 92141 6

1. Prolog (Computer program Ianguage) I. Title.
QA76.73.P76F66 1989
005.13'3—dc20
British Library Cataloguing in Publication Dats:
Ford, Nigel

PROLOG programming

1. Computer Systems. Programming languages : Prolog

1. Title

005.13'3

ISBN 0 471 92141 6
Typeset by Photo-graphics. Honiton, Devon. England 1

mmw'incmmumm,mu.m

- 89-31491

Cip

T

~

Preface

WHY LEARN PROLOG?

PROLOG (PROgrammmg in LOGic) represents an excmng new approach to

programming. It is a high-level language which takes much of the drudgery out of
programming. Compared to other languages such as BASIC, PASCAL, FORTRAN,
even LISP, the novice programmer in particular can spend much less time and effort-
going through the contortions of specifying in minute detail the steps the computer

must go through to solve the problem he or she is working on, Moregtime and effost -

can be spent thmklng about the problem itself, and the loglc -of how it might be
solved. The novice can arrive much sooner at the stage of being able to approach
relatively complex and meaningful problems.

Programs written in PROLOG are often very much- shorter ,t,han eqmvalent
programs written in other languages. They are often also much niore intelligible,
particularly to the newcomer to programming. PROLOG is t:e first efficient and
practical programming language to emerge from research into ‘programming in logic’
~ the ideal of which is that computers should be able to translate the logical reasoning
of the programmer into runnable, efficient programs. Unfortunately, we are far-
from this ideal. But PROLOG is the nearest thing we have to it at present!

Due to the availability of excellent implementations of PROLOG for personal as
well as larger computers, PROLOG is increasing rapidly in popularity as a powerful
programming language. PROLOG has been selected by the Japanese in their fifth-
generation project as the basis for a new generation of computers which work by
logical deduction rather than mathematical calculation.

THIS BOOK

This book is designed to teach you how to read and write PROLOG programs.
Despite its power and user-friendliness, whilst it is easy to make a start in PROLOG,
the ‘learning curve’ is relatively steep. Beyond a certain point, developing competence

requires considerable effort. As one of the leading JK software suppliers and .

training organizations in the field of artificial intelligence note in their training
brochure:

Experience has shown that mastering the basics of the language ... is often very
difficult for newcomers. and especially so if they are already highly experienced in
traditional ‘procedural’ languages

wii. PREFACE

It is well worth this effort, though, since arguably the power of PROLOG means
that for the same amount of effort you can go much further, in terms of the problems
you can approach, compared to other languages.

TRAINING VERSION OF PROLOG

If you want to use this book, but haven’t ;;ot your own copy of PROLOG, you can
(at the tin:e of writing) obtain an inexpensive copy of Chemical Designs’ tutorial
version of PROLOG-2. You can run most of the programs shown in this book on
this tutorial version. It is powerful, and comes complete with built-in editor and
help system. However, the main limitation is that you can’t save your programs to
a disk.

Appendix C in this book tells you how to get started using this tutorial version
of PROLOG. It runs on IBM-compatible personal computers with at least 512K of
RAM.

No such limitation apples to PROLOG-2 Personal, on which all the programs in
this book were run, and which is also available.

Further details may be obtained from

Chemical Designs Ltd,
7 West Way, .

Oxford OX2 0JB.

Tel. (0865) 251483

Preface

1.

Int: >duction

Programming in logic
Learning PROLOG

Lessons from learning research

Section A First gear

WENAt R LD

Basic input and output

Facts, questions and variables

‘And’, ‘or’, and the ‘anonymous variable’ /
Rules

Backtracking

The ‘cut’ -

Lists

Strings

" Section B Second gear

10.

11.

Recursion

Pattern 1

Pattern 2

Pattern 3 .
Pattern 4 '
Pattern § ‘
Pattern 6 e £
Pattern 7 ‘ :) '
Practice programs: recursion

Level 1

Level 2

Level 3

Séection C Third gear

i Level 1

Introduction

Complex pattern-matching and value-swapping ~
Complex data structures .

Complex combinations of procedures

/’/

vi

16.
17.
18.

CONTENTS

Level 2

Level 3

Level 4

An example: ELIZA

An example: the Towers of Hanoi puzzle
Operators .

Section-D Under the bonnet

19.

“Using the 'tracing facility

Section E Top gear

20.
21.

Introduction

Strategic thinking in action

(a) Concentrating on the logic of a problem

(b) Novel and flexible applications of techniques
(c) Applying strategies to analogous problems
Answers to exercises v

‘Ancestor’ and ‘descendant’ problems

‘Painting’ problem

Section F More practice programs

29.

Information retrieval
Finding all examples
Listing components
Fault finder
Translation

Defence

Grammar rules

Section G PROLOG and logic

PROLOG and logic

References

Books and training materials on PROLOG

Appendix A Built-in predicates

Appendix B ASCII codes

Appendix C Getting started with PROLOG-2

Index

149

151
152
154
164
174

217

219

226
234

239

1241

249
250
252
270

272

-2

"
%
2

', Introductioﬁ

'
i

' PROGRAMMING IN LOGIC |

PROLOG stands for PROgramming in LOGic. It represents a fundamentally new
approach to computing compared to more traditional languages like BASIC,
FORTRAN, PASCAL and even LISP (a popular and well-established language for
artificial intelligence programming).

Such other languages require the programmer to think very much in terms of
computer processess He or she must tell the computer step by step exactly how to '
tackle each task.

* PROLOG adopts a fundamentally different approach. It allows the programmer
to think much less in terms of what processes the computer must go through (in
other words, how) to solve a particular problem - and much more in terms of the
logic of the problem itself and of its possible solution (in other words, what the
problem is). In this way, the programmer can leave it to PROLOG to work out
many of the details of the exact processes required to go about solving the problem.

PROLOG is not designed primarily around our understanding of what a computer
requires in order to function efficiently. Rather, it is based on a model of logic
which is independent of any particular machine and relates more to how human
beings think and solve problems.

PROLOG falls short of the ideal of programming in ‘pure’ logic. Logic is not
hampered by considerations of procedural control ~ for example, the precise ordering
of sequences of operations. Although much less so than with other languages, the
PROLOG programmer does have to take accoynt of procedural details. In fact, one
of the main traps that novice programmers can fall into is attributing to PROLOG
too much ability to translate his or her intentions into an error-free program - only
to find that the program does not behave as expected. :

This is the reason why this book stresses a thorough procedural mastery of
PROLOG. PROLOG is often taught with a strong ‘declarative’ emphasis — that is.
an emphasis on thinking of the logical relationships between the objects or entities
relevant to a given problem, rather than on the procedural steps necessary to solve
it. This ‘declarative’ understanding of PROLOG programs is fine — indeed essential
= 5o long as it is rooted in a sound procedural understanding of what is going on.
This book deals with declarative understanding, but within the context of procedural
mastery. ,

You can do in PROLOG what you can do in any other programming language.
However, PROLOG has distinct advantages as well as disadvantages. Number-

2 INTRODUCTION

crunching (large and fast numerical calculation) is not PROLOG's strong point.
PROLOG can handle numbers, but not as fast or efficiently as languages designed
with this in mind. PROLOG scores when it comes to symbol manipulation (problem-
solving and decision-making not based primarily on numeric calculation).

Symbol manipulation is the core of what has come to be known as ‘artificial
intelligence’. You can write artificial intelligence programs in any language - but
not as quickly, effectively, and enjoyably, as in a language designed with this type
of application in mind. In the opinion of many, PROLOG is the supreme language
of this type. . ’

PROLOG makes it particularly easy for us to use many of the useful problem-
solving techniques provided by research into artificial intelligence. In particular, it
is well geared to the creation of

® intelligent systems (programs which perform useful tasks by utilizing artificial
intelligence techniques); :

® cxpert systems (intelligent systems which reproduce decision-making at the level
of a human expert); :

® natural language systems (which can analyse and respond to statements made in
ordinary language as opposed to approved keywords or menu selections);

® relational database systems.

Because it frees the programmer from concern with many of the ‘nuts-and-bolts’
minutiae traditionally associated with writing computer programs, PROLOG allows
us to think of problems at a high level. We can pay more attention to thinking
about the characteristics of the problem we are trying to solve, or the task we want
the computer to perform.

For this reason, PROLOG is an excellent language in which to build rapid
prototype systems, and to explore a variety of different approaches to solving a
problem or approaching a task. We can try things out and produce scaled-down test
programs without incurring the enormous amount of effort required with many other
Jlanguages. .

This applies to both experienced and novice programmers. The novice can make
progress more rapidly and approach tasks of real complexity early, and the
experienced programmer can increase his or her productivity in terms of the balance
of effort between problem-solving and coding.

LEARNING PROLOG

Getting started in PROLOG is relatively easy. We can often translate between
normal English and PROLOG with little effort. For example, as soon as we know
that :- means if and , means and, we can readily understand the following program:

*
PROLOG English

is—situated—in{-fondon, england). London is in England.
born_in{ sarah, london). Sarah was born in London.

INTRODUCTION 3

nationality(Person, english):- A person is English if
born_-in(Person, City), that person was born in a city
is—situated—in(City, england). and that city is in England.

However, beyond a certain point, a lot of effort is required, and the ‘learning curve’
rises steeply. For example, to solve the ‘Towers of Hanoi’ problem shown below,
you must transfer the three discs from pole A to pole B. But you can only move
one disc at a time, and you must never put a disc on top of a smaller one.

A B c

Figure 1

The PROLOG program below solves this problem very elegantly - and the same
- 'program can be used for any number of discs.

towers{Number):-
transfer(Number, left, middle, right).

transfer(0, —, —, —).

transfer(Number, Source, Destn, Spare):-
N is Number -1, v
transfer(N, Source, Spare, Destn),
write([’'Move a disc from ’,Source,’ to ’,Destn]),
nl,
transfer(N, Spare, Destn, Source).

All you have to do is type:
- towers(3). |
for three discs (or more or less if you wish), and PROLOG will reply:

[Move a disc from left, to ,middle)
[Move a disc from left, to ,right}
{Move a disc from ,middle, to ,right]
[Move a disc from left, to ,middle]
[Move a disc from ,right, to left]
[Move a disc from ,right, to .middle]
[Move a disc from left, to ,middle]

yes

4 INTRODUCTION

All 'well and good - tut try understanding the program! For the newcomer to
PROLOG, coming to understand the detailed workings poses considerable difficulties.

The same can be said even for the three-line program below. And all it does is
add two lists together to form a third!

1

add((], List, List).

add([Head|Tail], List..2, [Head|List_3]):-
add(Tail, List_2, List__3).

Understanding PROLOG programs can be difficult - particularly trying to read
elegant ones written by other people. Yet we need to be able to read fluently in
order to learn — to see how others have approached particular .problems, and to
add new techniques to our repertoire.

Some people take to PROLOG programming like ducks to water. But most
people find that whilst ﬂoating may be easy, paddling with any speed (not to mention
actually steering!) requires considerable effort. PROLOG may be easy uptoa point.
Beyond that poin*. the going can get tough.

Yet many texts introduce PROLOG techniques at a rapid pace - often with
minimal explanation of precise procedural details. The basics of PROLOG may be
explained in an early chapter, then taken for granted as techniques are introduced
in subsequent chapters. The reader is left with a lot of work to do - having to
extract for him or herself a detailed understanding of exactly how particular
techniques actually work, having to infer for him or herself underlying themes,
patterns and principles. This book is designed to make explicit much of what is only
implicit in many other texts, so that you can speed your learning of PROLOG.

Most books concentrate on PROLOG very much from the point of view of writing

programs. This is fine — but they do not also offer specific help in coping with the
difficulties of reading programs written by other people. But this is one of the most
important, yet difficult, aspects of learning to program.
«As with any foreign language, it is easy, once presented with some rudimentary
grammar and vocabulary, to begin to write coherent sentences. But to develop
con petence and extend our linguistic command we must be able to read text written
by others riore fluent in the language. This skill has its own particular problems.
It is not just a question of being given more and more grammar and vocabulary.
We need to develop strategies for approachmg and deciphering difficult text.

Good programs abound in the increasing number of texts on PROLOG. They

.are a rich potential source of learning. But for this potential to be tapped, the
person learning PROLOG must develop program-reading skills. Yet reading

* . programs is often much more difficult than writing them. One of the objectives of

this-book is to help you to do this.

Experts do not geperally achieve their expemse on account of having superior
mental hardware compared to that of less gifted individuals. To a large extent, we
are all working with similar equipment. It's how we use it that's important. This
book is geared to helping you optimize this use. It is base. on a number of principles
derived from research into human learning. If you are interested in the details, read
on. But if you would prefer to get straight into PROLOG. skip straight to Section

A (page 9).

INTRODUCTION 5

LESSONS FROM LEARNING RESEARCH

Here are some findings from learning research upon which this book is based. For
the interested reader, references to papers describing the research, referred to by
numbers in the text, are given in the ‘References’ section (page 249).

But first, we need to know something of the nature and limitations of a centyal
component in all our learning processes — our memory. The diagram showp in
Figure 2 depicts how many psychology researchers view the human memory system. '

Grouping pieces of information into more economical chunks reduces memory
load, which may otherwise prevent effective learning. Our short-term or ‘workipg’
memory has a limited capacity. We can hold only a certain number of discrete unjts
of information in working memory for processing at any one time. But if we can
‘chunk’ information s. that each individual unit contains a lot of items, we can
handle more complex processing.'? Reading PROLOG programs often involves
keeping track of a good many variables and their individual values, often through
more than one recursive cycle (recursion will be thoroughly explained in Section
B). To try to keep track of each of these values as isolated items is t0oo much for
our working memory. We lose track, and confusion sets in.

“
' M

Visual memory :
holds an image for 3—4 seconds U

|

PROVISIONAL
INTERPRETATIONS

' Short-term memory (STM) ’

or ‘Working memory’ Mentai repetition
typically hoids only three ‘chunks’ | hoids
of information at a time, information

iniﬂaﬂyiormzosmps in STM for

\ longer |

Long-term memory (LTM)

Episodic - Semantic
(events) + (meanings)

vast almoet indefinite storage of
information
|

Figure 2

] INTRODUCTION

Retention of information in long-term memory is also much more efficient if we
identify ‘deep’, superordinate themes which bring together and organize otherwise
discrete items of information (again, a form of ‘chunking’). Without such deep
organization, surface learning may occur, in which attempts at memorization replace
deep understanding.>* Unless we can develop such deep understanding of concepts
in long-term memory, we cannot approach more complex programs which incorporate
them within more complex structures. o

In the development of any skilled performance, we can further reduce load on
working memory by ‘compiling’ knowledge. That is to say, we can move away from
the use of very general-purpose processes which rely on moving a lot of data into
working memory for processing, to the development of specialized procedures which
have ‘built-in’ data.®¢ In this way, we can save working memory space for other
tasks. This involves amalgamating discrete processes into more complex units. This
point is similar to the first one — we need to be able to call up procedures, each of
which contains a lot of knowledge, yet does not tie up working memory. This is
important in reading complex PROLOG programs, when we need to assign one
unit of working memory to a whole complex of procedures, which represent only

. one of a number of themes we are trying to keep track of. Without such self-
contained units of information, our processing capacity is taken up with what in the
context of the whole program may be just one component detail.

We learn the unknown in terms of the known. The central importance to effective
learning of bridging the gap between learners’ existing knowledge, and new
information which is to be learned, has long been recognized.> More recently, the
importance of learning by analogy has been stressed.” This is one way of allowing
the processing of more complex information than would otherwise be the case. We
all have well-developed compiled. procedures covering certain areas of knowledge.
We can use them at an intermediary stage in the development of new procedures
- a8 structures or ‘scaffolding’, helping us cope with greater levels of complexity
than we could otherwise cope with. For example, we can handle information about
a mew game at a higher level of complexity if we can use knowledge we already

- bave about other games. It won’t be exactly the same, but we can borrow the
- structure to some extent to help us more quickly assimilate knowledge about the
new game. Once we have done sp, this mental scaffolding can be jettisoned to
- reveal the edifice of our new understanding. :
Effective learning requires an effective blend and balance of relatively narrow
* “procedural’ and broader ‘strategic’ knowledge. Taking a football example, procedural
knowledge relates to the individual techniques used by a player - controlling the
ball, shooting at goal, etc. Strategic knowledge is a more holistic understanding of
when to apply these techniques (and combinations of them) within the context of
a particular football match. This type of understanding is much less concerned with
exact procedural details of the specific techniques —~ how they work and how they
« can be improved - and more concerned with how they can be applied in particular
" circumstances, and how combinations of them can form particular match strategies. 7.
- Similarly, we can understand PROLOG techniques in a relatively narrow -
procedural way - in terms of how particular techniques actually work. We can also
understand PROLOG techniques in a broader strategic way - in terms of what types
of problems they are particularly suited to and how they may be combined to form
different problem-solving strategies. We need this relatively holistic level of thinking

-

INTRODUCTION 7

about PROLOG programs. But without also paying attention to procedural details,
we can find that our programs go sadly wrong — and that we may have overestimated
our understanding of what is really going on.

This book is organized around these learning principles.

Particularly in the case of recursion (Section B) — one of the most important and
difficult aspects of PROLOG programming - the book concentrates on identifying
and presenting a number of recurring patterns and themes in PROLOG which
underlie both simple and complex programs. These patterns are used to enable
unfamiliar programs to be approached in terms of familiar, known concepts. They
form chunks which, once fully understood and compiled, can be taken for granted
and applied without using up working memory store. We need to be able to do this
in order to see how more complex programs are built up.

The reader is encouraged to develop deep understanding rather than surface
memorization, by being given practice applying new concepts to new situations. A
given theme or pattern may crop up in a variety of programs from simple to complex,
and may be disguised by surrounding detail and use in different contexts. The reader
is encouraged to develop skills in recognizing underlying patterns and-themes despite
such surface differences. He or she must understand a given theme at a deep level,
rather than memorizing.its particular manifestations in specific contexts. Once this
is done, complexity is reduced, making it easier to approach unfamiliar programs..

Where appropriate extensive use is made of analogies. New concepts are presented
explicitly in terms of very familiar concepts. This allows the relatively quick handling
- of complexity. The unfamiliar becomes understood in terms of the familiar. To
supplement the use lof analogies (and to provide help where analogies are less
appropriate - for example, Section C) a bridge can stili be laid between the learner’s
existing knowledge and new ideas. In this case, a more tangible form of mental
‘scaffolding’ is erected. This takes the form of diagrams and annotated program
listings. These show explicitly the changing values of variables at different stages in
the running of a program. They make visible simultaneously complex data structures
and the larger chunks of which they are a part, and they show the complex flow of
control as the programs run.

In Section E, the relationship between detailed procedural approaches and more
holistic strategic approaches to PROLOG programming are discussed. The reader
is given practice in developing his or her strategic thinking in relation to PROLOG
programs. Both procedural and strategic approaches are necessary for effective
learning and application.

Section A

First gear

This section is mcant for the newcomer - it éxplains the basics of PROLOG. The
reader with some familiarity with PROLOG may prefer to skip to Section B
(page 59).

Section A deals with

® Basic input and output

® Facts, questions and variables

® ‘and’, ‘or’ and the ‘anonymous variable’
¢ Rules '

& Backtracking

® The ‘cut’

® Lists

® Strings

