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Preface

Students of classical mechanics can rely on a wealth of experi-
ence from everyday life to help them understand and apply
mechmnical concepts. Even though a stone is not a mass point,
the experience of throwing stones certaimly helps them to
understand and analyze the trajectory of a mass point in a
gravitational fleld. Moreover, students can solve many me-
chanical problems on the basis of Newton’s laws and, in doing
s0, gain additional experience. When studying wave optics,
they find that their knowledge of water waves, as well as
experiments in a ripple tank, are very helpful in forming an
intuition about the typical wave phenomena of interference
and diffraction.

In quantum mechanics, however, beginners are without
any intuition, Becsuse quantum-mechanica] phenomena
happen on an atomic or a subatomic scale, we have no
experience of them in daily life. The experiments in atomic
physics involve more or less complicated apparatus and are by
no means simple to interpret. Even if students are able to
take Schetidinger’'s equation for.granted, as many students do
Newton’s laws, it is not easy for $hem to acquire experience in
quantum mechanics through the solution of problems. Only
very few'fgyoblems can be treated without a computer.
Moreaver, when solutions in form are known, their
complicated structure and the special mathematical functions,
which students are usually entountering for the first time,
constitute severe obstacles to developing a heuristic
comprehension. The most difficult hurdle, however, is the
formulation of a problem in quantum-mechanical language, for
the concepts are completely different from those of classical
mechanics. In fact, the concepts and equations of quantum
mechanics in Schrédinger’s formulation are much closer to
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those of optics than to those of mechanics. Moreover, the
quantities tnat we are interested in—such as transition
probabilities, cross sections, and so on—usually have nothing
to do with mechanical concepts such as the position,
momentum, or trajectory of a particle. Nevertheless, actual
insight into a process is a prerequisite for understanding its
quantum-mechanical description and interpreting basic
properties in quantum mechanics like position, linear and
angular momentum, as well as cross sections, lifetimes, and so
on.

Actually, students must develop an intuition of how the
concepts of classical mechanics are altered and supplemented
by the arguments of optics in order to acquire d roughly
correct picture of quantum mechanics. In particular, the time
evolution of microscopic physical systems has to be studied to
establish how it corresponds to classical mechanics. Here
computers and computer graphics offer incredible help, for
they produce a large number of examples which are very
detailed and which can be looked at in any phase of their time
development. For instance, the study of wave packets in
motion, which is practically impossible without the help of a
computer, reveals the limited validity of intuition drawn from
classical mechanics and gives us insight into phenomena like
the tunnel effect and resonances, which, because of the
importance of interference, can be understood only through
optical analogies. A variety of systems in different situations
can be simulated on the computer and made accessible by
different types of computer graphics.

Some of the topics covered are

* scattering of wave packets and stationary waves,
* the tunnel effect,

* decay of metastable states,

* bound states in various potentials,

* energy bands,

« distinguishable and indistinguishable particles,

* angular momentum,

* three-dimensional scattering,

* cross sections and scattering amplitudes,

* eigenstates in three-dimensional potentials, for example
in the hydrogen atom,

1)

partial waves and resonances.



The graphical aids range from

» time evolutions of wave functions for one-dimensional
problems,

» parameter dependences for studying, for example, the
scattering over a range of energies,

« three-dimensional surface plots for presenting two-
particle wave functions,

to

« ripple tank pictures to illustrate three-dimensional
scattering.

Whenever possible, how particles of a system would behave
according to classical mechanics has been indicated by their
positions or trajectories. In passing, the special functions
typical for quantum mechanics, such as Legendre, Hermite,
and Laguerre polynomials, spherical harmonics, and spherical
Bessel functions, are also shown in sets of pictures.

The text presents the principal ideas of wave mechanics.
The introductory Chapter 1 lays the groundwork by discuss-
ing the particle aspect of light, using the fundamental experi-
mental findings of the photoelectric and Compton effects and
the wave aspect of particles as it is demonstrated by the
diffraction of electrons. The theoretical ideas abstracted from
these experiments are introduced in Chapter 2 by studying
the behavior of wave packets of light as they propagate
through space and as they are reflected or refracted by glass
plates. The photon is introduced as a wave packet of light
containing a quantum of energy.

To indicate how material particles are analogous to the
photon, Chapter 3 introduces them as wave packets of de
Broglie waves. The ability of de Broglie waves to describe the
mechanics of a particle is explained through a detailed discus-
sion of group velocity, Heisenberg’s uncertainty principle, and
Born’s probability interpretation. The Schrédinger equation is
found to be the equation of motion.

Chapters 4 through 8 are devoted to the one-dimensional
quantum-mechanical systems. Study of the scattering of a
particle by a potential helps us understand how it moves
under the influence of a force and how the probability inter-
pretation operates to explain the simultaneous effects of trans-
mission and reflection. We study the tunnel effect of a particle
and the excitation and decay of a metastable state. A careful
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transition to a stativnary bound state is carried out. Quasi-
ciassical motior of wave packets confined to the potential
rapge is also examined.

Chapters 7 and 8 cover two-particle systems. Coupled
harmonic oscillators are used to dlustrate the concept of
indistinguishable particles. The striking differences between
systems composed of different particles, systems of identi;al
bosons, and systems of identical fermions obeying the Paul
principle are demonstrated.

Three-diiensional quantum mechanics is the subject of
Chapters 9 through 13. We begin with a detailed study of
angular momentum and discuss methods of solving the
Schrodinger equation. The scattering of plane waves is in-
vestigated by introducing partial-wave decomposition and the
concepts of differential cross sections. scattering amplitudes,
and phase shifts. Resonance scattering, which is the subject of
many fields of physics research, is studied in detail in Chapter
13. Bound states in three dimensions are dealt with in Chapter
12. The hydrogen atom and the motion of wave packets on
Lelliptical orbits under a harmonic force are among the topics
covered.

The last chapter is devoted to results obtained through
experiments in atomic, molecular, solid-state, nuclear, and
particle physics. They can be qualitatively understood with
the help of the pictures and the discussion in the body of the
book. Thus examples for

* typical scattering phenomena,

* spectra of bound states and their classifications with the
help of models, )

* resonance phenomena in total cross sectiof1§, &

Yoy

* phase shift analyses of scattering and Regge classification
of resonances,

* radioactivity as decay of metastable states.

taken from the fields of atomic and subatomic physics. are
presented. Compxring these experimental results with the
computer-drawn pictures of the book and their interpretation
gives the reader a glimpse of the vast fields of science that can
be understood only on the basis of quantum mechanics.
There are more than a hundred problems at the ends of
the chapters. Many are designed to help students extract the
phyﬁcshomﬂxepicmm.Oﬂxmwilgivethempmcﬁcein
Mng&otheoreucdooncepn.Ontheendpapersofthe
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book are a list of frequently used symbols, a short list of
physical constants, and a brief table converting SI units to
particle physics units. The constants and units will make
numerical calculations easier. '

All computer-drawn figures were produced with an inter-
active computer program developed especially for this book.
Figure 9.5, the one exception, was made by Dr. Peter Janzen.

The hand-drawn figures and the letteiing of the others were

done by Manfred Euteneuer. Rudiger Schiitz helped with
some technical points of the computer graphs. Gertrud Kreuz
carefully typed the manuscript. Professor Diethard H. Schiller,
Professor Fritz W. Bopp, and Dr. Hans-Jiurgen Meyer read the
manuscript and offered helpful criticism. We are grateful to all
of them for their kind cooperation.

We are particularly grateful to Professor Eugen Merz-
bacher for his kind interest in our project and for many
valuable suggestions which helped to improve the book.

Siegmund Brapdt

Hans Dieter Dahmen
Siegen, Germany
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Introduction

The basic fields of classical physics are mechanics and heat on
the one hand and electromagnetism and optics on the other.
Mechanical and heat phenomena involve the motion of par-
ticles as governed by Newton’s equations. Electromagnetism
and optics deal with fields and waves, which are described by
Maxwell’s equations. In the classical description of particle
motion, the position of the particle is exactly determined at
any given moment. Wave phenomena, in contrast, are char-
acterized by interference patterns which extend over a certain
region in space. The strict separation of particle and wave
physics loses its meaning in atomic and subatomic processes.

Quantum mechanics goes back to Max Planck’s discovery
in 1900 that the energy of an oscillator of frequency v is
quantized. That is, the energy emitted or absorbed by an
oscillator can take only the values 0, hv, 9hv,... . Only multi-
ples of Planck’s quantum of energy

E=hv
are possible. Planck’s constant,
oh=6262 10" Ws

is a fundamental constant of nature, the central one of quan-
tum physics. Often it is preferable to use the angular frequency
w = 27v of the oscillator and to write Planck’s quantum of
energy in the form

E=ho -~
Here
h
h=2n

is simply Planck’s constant divided by 2. Planck’s constant is



9 - 1. INTRODUCTION

- Figure 1.1 Photoelectric effect.
(a) Theg tus to measure:the
effect consists of a vacuum tube
containing two electrodes.
Monochromatic light of frequency
v shines on the cathode and
liberates electrons which may
reach the anode and create a
current I in the external circuit.
The flow of electrons in the
vacuum tube is hindered by the
external voltage U. It stops once
the voltage exceeds the value U,.
(b) There is a linear dependence
between the frequency v and the
voltage U,. :

a very small quantity. Therefore the quantization is not ap-
parent in macroscopic systems. But in atomic and subatomic
physics Planck’s constant is of fundamental importance. In
order to make this statement more precise, we shall look at
experiments showing the following fundamental phenomena:

« the photoelectric effect,
« the Compton effect,

o the diffraction of electrons.

hv
O =
e
A
+ -
F
*)
tan & =h/e
a
rd| =

i
v




The photoelectric effect was discovered by Heinrich Hertz
in 1887. It was studied in more detail by Wilhelm Hallwachs
in 1888 and Philipp Lenard in 1902. We discuss here the
quantitative experiment, which was first carried out in 1916
by R. A. Millikan. His apparatus is shown schematically in
Figure 1.1a. Monochromatic light of variable frequency falls
onto a photocaihode in 2 vacuum tube. Opposite the photo-
cathode there is an anode—we assume cathode and anode to
consist of the same metal —which is at a negative voltage U
with respect to the cathode. Thus the electric field exerts a
repelling force on the electrons of charge — e that leave the
cathode. Here e = 1.609 - 107 coulomb is the elementary
charge. If the electrons reach the anode, they flow back to the
cathode through the external circuit, yielding a measurable
current I. The kinetic energy of the electrons can therefore be
determined by varying the voltage between anode and
cathode. The experiment yields the following findings.

1. The electron current sets in, independent of the voltage
U, at a frequency », that is characteristic for the
material of the cathode. There is a current only for
v > v,

2. The voltage U, at which the current stops flowing
depends linearly on the frequency of the light (Figure
1.1b). The kinetic energy E,,, of the electrons leaving
the cathode then is equal to the potential energy eU, of
the electric field between cathode and anode:

E,., = el

If we call h/e the tangent of the straight line repre-
senting the relation between the frequency of the light
and the voltage, '

a='g(”’" ”o)

we find that light of frequency » transfers the kinetic
energy eU, to the electrons kicked out of the material é’f
the cathode. When light has a frequency less than ¥,
no electrons leave the material. If we call

hyv, = eU,
the ionization energy of the material that is needed to

free the electrons, we must conclude that light of
frequency » has energy

E=hy =ho

1. INTRODUCTION
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4 1. INTRODUCTION

with

_h

T

3. The number of electrons set free is proportional to the -
intensity of the light incident on the photocathode.

w =27y, h

In 1905 Albert Einstein explained the photoelectric effect
by assuming that light consists of quanta of energy hv which
act in single elementary processes. The light quanta are also
called photons or y-quanta. The number of quanta in the light
wave is proportional to its intensity.

If the light quanta of energy E = hv = hw are particles, _
they should also have momentum. The relativistic relation
between the energy E and momentum p of a particle of rest
mass m is

p= %‘/Ez . m2c4

where c is the speed of light in vacuum. Quanta moving with
the speed of light must have rest mass zero, so that we have

= L o o

where k = w/c is the wave number of the light. If the
direction of the light is k/k, we find the vectorial relation -
p = hk. To check this idea one has to perform an experiment
in which light is scattered on free electrons. The conservation
of energy and momentum in the scattering process requires
that the following relations be fulfilled,

E +E =E, +E

p, +p.=p, TP
where E_, p, and E/, p; are the energies and the momenta of
the incident and the scattered photon, respectively. E_, p,,

E., and p, are the corresponding quantities of the electron.
The relation between electron energy E, and momentum p,

is
E, = cyp? + mic?
where m, is the rest mass of the electron. If the electron is

initially at rest, we have p, = 0, E, = m c? Altogether, mak-
ing use of these relations, we obtain

chk + mc? = chk’ + cyp* + mic®

hk = hk’ + p;
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Figure 1.2 The Compton effect.
(a) Kinematics of the process. A
photon of momentum p, is
scattered by a free electron at
rest, one with momentum p, = 0.
After the scattering process the
two particles have the momenta
p,, and p), respectively. The
direction of the scattered photon
forms an angle ¥ with its original
direction. From energy and
momentum conservation in the
collision, the absolute value p;

of the momentum of the scattered
photon and the corresponding
wavelength N’ = h / p/, can be
computed.

(b) Compton’s results.
Compton used monochromatic
X-rays from the K line of
molybdenum to bombard a
graphite target. The wavelength
spectrum of the incident photons
shows the rather sharp K line
at the top. Observations of the
photons scattered at three
different angles & (45°, 90°,
135°) yielded spectra showing
that most of them had drifted to
the longer ‘vavelength N. There
are also many photons at the
original wavelength \, photons
which were not scattered by
single electrons in the graphite.
From A. H. Compton, The
Physical Review 22 (1923) 409,
copyright © 1923 by the American
Physical Society, reprinted by
permission.



