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Preface to the Series

In the last few years many important developments have taken place in
Soviet science which may have not received as much attention as
deserved among the international community of scientists because of
language problems and circulation problems.

In launching this new series of Sovier Scientific Reviews we are
motivated by the-desire to make accounts of recent scientific advances
in the USSR more readily and rapidly accessible to scientists who do
not read Russian. The articles in these volumes are meant to be in the
nature of reviews of recent developments and are written by Soviet
experts in the fields covered. Most of the manuscripts are translated
from Russian..In the interest of speedy publication neither the authors
nor the volume editors have an opportunity to see the translations or to
read proofs. They are thereforg absolved of any responsibility for
inaccuracies in the English texts.

Soviet Scientific Reviews will appear annually, with the average of
specific subject areas in each of the sciences varying from year to year.
In 1979- we published volumes in Chemistry and Physics. In 1980 we
expanded the series with the addition of annual volumes in Biology,
Mathematical Physics and Astrophysics and Space Physics.

We are much indebted to the volume editors and individual authors
for their splendid cooperation in getting these first volumes put to-
gether and sent to press under considerable time pressure.

The future success of this series depends, of course, on how well it
meets the readers’ needs and desires. We therefore earnestly solicit
readers’ comments and particularly suggestions for topics and authors
for future volumes.

By taking this initiative we hope to contribute to the development of
scientific cooperation and the better understanding among scientists.



Preface

In this second volume of Soviet surveys in mathematical physics, we
present papers on two themes, quantum fluctuations of classical
solutions in field theory, and the problem of stochasticity (and other
aspects of the qualitative behavior of solutions) in nontrivial multidi-
mensional dynamical systems that arise in various physical problems.

The survey by Fateev, Frolov, Schwarz and Tyupkin contains a
presentation of results recently obtained by the authors. This quasi-
classical approach requires the calculation of classical extrema of the
action in a Euclidean metric and of some related quantities in order .
to calculate the asymptotic classical Green’s function. The problem is
solved completely in a two-dimensional model. Some individual re-
- sults show promise in helping to solve the analogous problem in the
theory of the Yang-Mills SU(2) field in four-dimensional space. -

The remaining four surveys are combined under the general tltle
“Stochasticity in Nonlinear Dynamical Systems.” :

The Bogoyavlenskii paper contains a description of certain geqmet-
ric methods for qualitative investigatioh' of multidimensional dynami-
cal systems. Starting in 1971-1973, these methods originally were
developed by Novikov, Bogoyavlenskii, and later also by Persetskii,
for the qualitative investigation of the Einstein equations in spatially

homogeneous models of the general theory of relativity at early stages * * .

in the evolution of the Universe. It proved to be possible to give a*
classification of all possible regimes of evolution, including the BLK -
(Belinskii-Lifshitz-Khalatnikov) stochastic regime discovered earlier
by different methods, and some newer ones. It also helps to formulate
and solve the problem of “typical” regimes (within the framework of
homogeneous models) of expansion of the Universe during early
stages of its evolution. In later work Bogoyavlenskii greatly improved
and successfully applied these methods to problems of gas dynamics,
the study of perturbations of the Toda lattice, etc.

The survey by Ya. G. Sinai and Ya. B. Pesin describes the present
state of the well-known class of dynamical systems of hyperbolic type.
In the early 1960’s Smale, Anosov, Sinai, Arnold and others
discovered this kind of system and found that it possessed remarkable
topological (qualitative) and stochastic (ergodic) properties. Sinai and

[2.9
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Pesin consider many important examples that have been studied in
reeent years. They give a summary of results on the so-called
“hyperbolic attractors” (i.e., attracting sets, in which the dynamics has
the hyperbolic property). They discuss strange attractors in connec-
tion with the well-known Lorentz system.

The paper by Pikovskii and Rabinovich is concerned with the
problem of stochasticity in dissipative systems. The survey contains a
description and interpretation of various experiments from different
branches of physics in which stochastic behavior is observed. v

The survey by Chirikov, Izrailev and Shepelyanskii concerns the
investigation of stochasticity in classical and quantum dynamical
systems. A detailed discussion is given of the criteria for overlapping
of nonlinear resonances which present the condition for the appear-
. ance of global diffusion in the phase space. of a classical system.

They discuss the seeming contradiction between the stochasticity of
the classical system and the behavior of the corresponding quantum
system. They give a simple classical model of quantum stochasticity.

!

- . S. P. Novikov, Editor

b ]
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Part 1:
Quantum Fluctuations of Instantons

V. A. FATEEV, * |. V. FROLOV, ** A. S. SCHWARZ***
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*| . D. Landau Institute of Theoretical Physics,
117334 Moscow, U.S.S.R.
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*+*Moscow Physical Engineering Institute, Moscow,
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11.  System of Instanton Quarks in Gauge Theories

Appendix

Although a great deal of attention has been devoted in recent years to
- the role of instantons in gauge theories, it cannot be said that the
question of the contribution of instantons has been explained in
sufficient detail. In most papers it is assumed that the only important
instantons with topological number ¢ are those that can be repre-
sented as a superposition of ¢ instantons with topological number 1
(the approximation of a dilute instanton gas [1]). This approximation
leads to infrared divergences, which we now know are associated with
the fact that this approximation is by no means always valid.

To get closer to an understanding of the role of instantons in gauge

theories it is wise to consider two-dimensional models. These are the
two-dimensional nonlinear s-model, which is in many aspects similar
to four-dimensional gauge theory with the gauge group SU(2), and
the two-dimensional CP(n — 1)™model, which is analogous to gauge
theory with the group SU(n). The first part of this paper is devoted to
the study of these models. The most complete results are obtained for
the nonlinear o-model. We show that in this model it is convenient to
associate with an instanton solution with topological charge g a
system of g positively charged and g negatively charged Coulomb
particles (“instanton quarks™). The study of the instanton contribu-
tion reduces to an investigation of the neutral Coulomb gas of
“instanton quarks.” In particular this investigation shows that the
infrared divergences that are characteristic of the dilute instanton gas
approximation vanish when we sum over all instanton contributions
(as the result of Debye screening in the Coulomb gas).
, One might suppose that the qualitative features of the instanton
contribution in the two-dimensional o-model are preserved in four-
dimensional gauge theories; heuristic arguments in support of this
hypothesis are presented in [2].-In any case, the results obtained in the
two-dimensional models give strong arguments in favor of investigat-
ing the instanton contribution in gauge theories beyond the frame-
work of the dilute instanton gas approximation. The second part of
the paper is devoted to this investigation. The results of this part are
much less complete than in the two-dimensional case; a partial reason
is that there is at present no sufficiently explicit description of all
instantons in gauge theories.

4



QUANTUM FLUCTUATIONS OF INSTANTONS 3

From the mathematical point of view the calculation of quantum
fluctuations of instantons reduces to finding determinants of certain
elliptic operators. A short appendix contains the main facts about
regularized determinants of elliptic operators. The opérators consid-
ered in this paper can be regarded as elliptic operators acting in
sections of vector bundles. We describe this interpretation of our
operators, but we do not make essential use of the language of vector
bundles in order not to make the reading of the paper difficult for
physicists. (Places where we mention bundle concepts can be
skipped.) We mention that many of the proofs in this paper could be
based on the results of [3] and [4]. These papers contain the general
theory of the partition function for a degenerate Lagrangian, which
finds application not only in quantum field theory but also in topol-
ogy. We shall not present this general theory here; however, our
proofs use the methods developed in (3] and [4].

The basic results on calculating the contribution of instantons to
the Euclidean Green’s function in the two-dimensional o-model and
CP(n — 1) model were obtained in [5-7]. A somewhat later paper 18]
contains equivalent results. Some of the results in Secs. 3 and 5 are
new. Some of them are published in [9].

The results of calculations of the instanton contribution in four-
dimensional gauge theory, presented.in Secs. 6—11 were published in
[2—4], [10-11]. Similar results were obtained in [12-15].

§1. Instantons in Models with Nonlinear Fields

We consider fields defined on an n-dimensional Riemannian miani-
fold E and. talcmg values in an m-dimensional Riemanniafi ‘manifold
M (or, if we use mathematical terminology, mappings of themanﬁold
E into the manifold M ). We shall assume that a cooTiaxate system
has been introduced in the manifold M (..., 9™ and that the
Riemannian metric is given in this coordinate system by the formula
-h@dd
We denote coordmates n E by x',..., x", and write the- metric in
the form = .
= guB(x) dx“dx®.

.
e

We assocmte with the field ¢(x) =(¢'(x), . . ., ™(x)) thé number

S(9) = 2ffh,,( )ax a(p; ghxydv ‘_(_1.1)
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(as always g"‘” is the reciprocal of the metric tensor, dV = \/—

dx':--dx" is the volume element in E). The functional (1.1) can
also be written in the invariant form
1
S(@)= 5= | TrD*(x)D(x)dV 1.2
(9) = 57 [, TrD*(x)%x) (12)

where D(x) is the differential of the mapping ¢ at the point x,
considered as a linear operator acting from the tangent space E, to
the manifold E at the point x into the tangent space I ,, to the
manifold M at the point @(x) (the adjoint operator D *(x) is calcu-
~ lated using the scalar products in E, and Myxy defined by the
Riemann metrics). Functionals of the form (1.1) occur in physics in
various situations. For example if E is Euclidean space while M is the
two-dimensional sphere with the usual metric, then. the functional
(1.1) has the meaning of the energy of an isotropic classical Heisen-
berg ferromagnet; if M is an ellipsoid, then (1.1) represents the energy
of an anisotropic ferromagnet. If E is Euclidean space and M is the
sphere §” with the usual metric, then (1.1) can be interpreted as the
Euclidean action of an O(n + 1)symmetric o-model. (If we mtroduce
the Minkowski metric in E, then (1.1) represents the usual actien.)
Let us consider in more detail the case where E is the two-
dimensional Euclidean space E?, and M is the two-dimensional
sphere S2. It will be convenient to parametrize the points of the
sphere S? by complex numbers w by using stereographic projection:
n’+ in?
1+n

where n = (n',n%,n%, |n|=1. Then the element of length on the
sphere is given by the formula

dsZ — 4deW .
1+ [wp)’

w =

The points of the plane E? are parametrized by complex numbers
z = x' + ix% In our coordinates the functional (1.1) takes the form

se=% [0+ (2 824 B B 0an, (13)

9 1(9 ;8 8 _1(3 ,;8
0z 2(8x lay)’ 9z '2(8x+‘8y)'

We ghall congider the functional S only on fields that have a limit as

where
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|zl > o0. In other words we shall assume that the field w(z,Z),
considered as a mapping of the plane E? into the sphere S? can be
extended to a continuous mapping of the sphere obtained from E? by
adjoining the point at infinity. (This restriction is not important, since
heuristic arguments show that the action can be finite only for the
fields that we are considering.)

It is known that one can associate with the mapping of a sphere
into a sphere an integer—the degree of the mapping. The degree of a
mapping can be expressed analytically as the integral of the Jacobian.
In our case the degree of the mapping (the topological charge of the
field) can be represented in the form

q(w) f(l + |w|2 ( ow aW _ Ow W )d Ix2. (14)
z
From (1.3) and (1.4) we find

swy =34 f 1 (w )+ f(1+|w|2 ldx dx%,  (L15)

S(w)= - f 2 (w )+ff(1+|w|2) lawldx dx (1.6
Relations (1.5) and (1.6) show that o
S(w) > 7" lq(w)l-

The minimum of the functional S on the space of fields havmg
topological charge g, with q > 0 is attained on fields satisfying the .
equation dw/93Z =0 (i.e., on analytic mappings). But if ' 9< 0, then
the minimum of this functional is attained on fields satisfying the .
condition dw/3z = 0 (anti-analytic mappings). We see. that- analytic
mappings are extrema of the functional S(w); they are cailed instan-
tons. The anti-analytic mappings are also extrema, and are called
anti-instantons. It should be noted that the point w = oo is in no way
singular (it corresponds to the north pole of the sphere). Thus the pole
of the function w must not be considered to be a singularity. Thus an
analytic mapping is given by functions w(z) having a finite number of
poles i.e., by rational functions:

w(z) = (1)

0(z2)°
where P(z) and Q(z) are polynomlals,/h is casy to verify that m
topological charge of the fleld is eqnal ‘to the larger degree“ Qf“f‘the’
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polynomials P(z) and Q(z). It then follows that the analytic map-
pings having topological charge ¢ form a (4 + 2)-dimensional mani-
fold. We see that, on the manifold of fields with topological charge 9,
the functlonal S has a (4|q| + 2)-dimensional manifold N, of station-
ary points (analytic mappings if g > 0, and anti-analytic mappmgs if
g <0). On all the fields of the manifold N, the functional § takes the
value 47f ~!|g|; the functional S has a larger value on all other fields
with topological charge ¢ [16].

Similar statements can be proved in much more general situations.
Let us consider, in particular, a case where the sphere S has a metric
different from the usual one. Since all metrics on the sphere S? are
conformally equivalent, we can write an arbitrary metric on the
sphere S? in the form

ds? = h(w, ) —DwdP__ 1.8
) Y

where h(w,w) is a positive function that tends to a nonzero constant
as |w|— + oo. The functional (1.1) is then expressed in the form

_a W) ow aw  aw 2 ‘
e f(1+lw2|) (5 5 + 5 5 ) a9

and the topological charge of the field w(z,Z) has the form

W "(W’W) dw 3B _ 9% Bw | 4y

where
h(w,Ww
L“=f—————-( )zdw‘dwz.
(1+|wp)
From the relationi

h(w,w) w W

(]+| |2)2 9z 9z

it follows that in this case analytic mappings (rational functions) also
provide the minimal value of the functional S(w) on fields with
topological charge ¢, and this value is 4L~ 'f ~'q.

A further generalization can be obtained if we take for the mani-
fold M an arbitrary Kihler manifold [17]. We recall that a complex

fS=4L"q +8f dc'dx® - (L11)
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manifold M with hermitian metric

ds? = hy,(w,W)dw® A dw® » (1.12)
is called a Kdhler manifold if the 2-form /
Sz=.£-h,,,,(w,W)dw"/\dW | | (1.13){

is closed. The hermitian metric generates a Riemannian metric in M,
so that the functional (1.1) is defined on fields given on the plane E?
and taking values in M. Representing a point in the plane E? by a
complex number z = x' + ix?, we can write this functional in the

form

_ i — [ dw” aF aw”? . aﬁ 1 2
- ffhnb(w’w)( 3z 3z + 9z 3z )dx dx”. (1.14)

The topological charge of the field w(z, Z) can be determined from the
formula

; a b a aLb
q=wa‘Q=Lf%hab(w,W)(aw JOw? 3w’ 3w )dz/\d‘i

0z az 0z 9z

- a b a b
= tha,,(w,W)( a;; . 35”2 - ag"r : 35"2 )dx'dxz, (115)
where w*Q is the image of the form £ under the mapping w of the
plane E? into M, and L is a constant chosen so that the topological
charge takes integral values. (As before, we assume that the field w
can be continued into a continuous mapping of the sphere obtained
from E? by adjoining the point at infinity.) From the relations (1.14)
and (1.15) we obtain

fS—4L" q=8fh,,,,(ww)3“’ 35" dx'dx?,
z (1.16)

aw 2
fS+4L7'q= 8fha,,(ww) - S dx!dx?,

from which we see that

S>4L7|q|f!

Wwhere the equality S =4L~'f"'|g| is attained on analytic mappings
when ¢ > 0, and on anti-analytic mappings when ¢ < 0.

The case when E is the two-dimensional sphere S2 while M is a
Kdhler manifold is practically the same as the one just considered. In
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fact it is easy to see that the action (1.1) is unchanged by conformal
transformations of the metric of the space E (i.e., for changes of the
metric g,4(x) into p(x)gu,g (x)). Noting that stereographic projection is
a conformal mapping of the sphere S? onto E?, we see that in
stereographic coordinates the action (1.1) on the sphere takes the
form (1.14). The. topological charge of:the mapping of S? into the
Kihler manifold M, just like the mapping of E? into M, can be
determined from formula (1.15).

- §2. The Expression of the Instanton Contribution in Terms of
' Regularized Determinants

We shall consider two-dimensional nonlinear models describing fields
that take on values in a Kdhler manifold. In the models we consider,
the Euclidean Green’s function can be represented as the ratio of two
functional integrals

I(<I>)=f®(w)e‘-s(w)60w/fe-s(w) Dw @

" where S(w) is the Euclidean actidn (1.14), the functional integral runs
over fields w(z) taking values in the manifold M, and ®(w) is a
functional of the field w. It is understood that to give meaning to the
integrals in (2.1) one must first go over to finite-dimensional integrals
(e.g., by means of a lattice cutoff) and then remove the cutoff, by
assuming that the coupling constant depends on a cutoff parameter in
momentum space. .

We shall assume that an infrared cutoff has been fixed, for exam-
ple, by assuming that the fields are defined in a sphere of radius R.
The infrared cutoff can be removed in the final formulas.

In the case where the fields in the nonlinear two-dimensional model
take on values in a symmetric space (e.g., on a sphere or in CP(n —
1)), one can show, in the framework of perturbation theory, that the
dependence of the coupling constant on the cutoff parameter can be
chosen so that the Euclidean Green’s function has a finite limit (in
other words, that the theory is renormalizable).

We shall try to apply the Laplace method to calculate the func-
tional integrals appearing in (2.1). We recall that in the finite-
~dimensional case the asymptotic behavior of the integral

f F(x)exp( (f ) )

where S(x) is a function that attains its minimum y on a k-
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dimensional manifold N, has the form
(7)™ 2exp(— v/ f) fN F(x)(detS"(x))"dyy  (22)-

where du, is the measure on N given by the Riemannian metric, while
the determinant of the degenerate matrix S/ = %8 /0x, dx; 1s taken to
be the product of the nonzero eigenvalues of this matrix. (We are
assuming that N is a nondegenerate stationary manifold, i.e., at each
point of the manifold the matrix S,]f’(x) has the same number k of
zero eigenvalues.)

Formally applying the relation (2.2) for calculating the infinite-
dimensional integrals appearing in (2.1), we arrive at an expression
for the instanton contribution to the Euclidean Green’s function

S,(27 )
2,27f)

(dim A — dim N,)/2

[n,@(w)(det S”(w))~ "2 duo(w)e 49/

(dim M —dim N,)/2

1(®) =
[ 5, ®(det S (w)) ™' dug(wye %4/

(2.3)

Here the symbol S”(w) denotes the operator defined by the relation

-

S(w+ r)y= S(w) + 8o S (wpp> + o(Iv12). (2.4)

f

The explicit form of the operator §” and the measure du, will be
described later. The scalar product of small deviations »'", »'® from
the field w is defined by

AV = %fhy(;,’_m?/(z) + ;;z),,j(n)dV. (2.5)

In order to give a meaning to the expressions appearing in (2.3) we
must introduce a cutoff (e.g., by using a lattice). When the lattice is
introduced, the integral in the definition of the scalar product (2.5)
must be replaced by a sum: in the limit, as the lattice constant a goes
to zero, the lattice scalar product {»'"’ . »'¥ is related to the scalar
product (2.5) by the relation

<V(l) (2)> =q Zlv”(ln V(2)>
This means that the lattice analog dug of the measure dy, as a >0 is
related to the measure dy, by the relation

d;L(‘)' =a” dim A, dp-()

In investigating the determinant " it is convenient to introduce, in
place of the lattice cutoff, a proper time cutoff (c¢f. the appendix),
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assuming that the proper time cutoff parameter is related to the lattice
constant by the relation € = consta®. From formula (A.6) it follows
that the asymptotic form of logdet, S” as e >0 i§

—o:—' + (o, — p)loge,

where a, is independent of w, while & can be represented in the form
ay = vq + B, where y and B are independent of the field. The cou-
pling constant f-should be regarded as depending on the cutoff
parameter € according to the formula

4 _
i const + ylna

where L is the constant appearing in (1.15). This formula is usually
written in the form

,f"=fR“+(aI:)lnav (2:6)

where » is called the normalization point, and f, is the physical
coupling constant corresponding to the normalization point » (per-
turbation theory gives a result for the dependence of the cdupling
constant on a that agrees with formula (2.6)). It is easily verified that
with this choice of the dependence of f on a all the factors in (2.3)
that diverge in the limit a = 0 drop out.

As a result we obtain a finite expression for the instanton contribu-
tion to the Euclidean Green’s function in terms of the regularized
determinants

lns(®) = 2K [ O(e)dp(w) [ ZK[ duiw)  @27)
where
du(w) = (det' S"(w)) " duo(w) / [ det'S” (o) do( wa);

(28)
K = kfg "wYexp(—4/Lf);

k is an unimportant constant that depends on the choice of cutoff,
det’ S ”(w) is the proper-time regularized determinarit of the operator
S”(w). (For convenience, we have normalized du(w) to the contribu-
tion of the zero-instanton solution in the denominator of (2.1).)

It is understood that one should also consider the contribution to
the Green’s function alse from “almost stationary” fields, in particu-



