A.dABRO

THE EVOLUTION
OF SCIENTIFIC

- THOUGHT

*  FROMNEWTON
TOEINSTEIN

< il




A.dABRO

THE EVOLUTION
OF SCIENTIFIC

THOUGHT
FROM NEWTON
TOEINSTEIN

This history first sketches the essential features of Newton’s great dis-
coveries, and the apparent inevitableness of absolute space and time
in classical science; then Riemann’s non-euclidean geometry is dis-
cussed, and finally the way in which Einstein transported his ideas
into the realm of physics, giving us thereby that supreme achievement
of modern thought, the theory of relativity. Although non-technical
language is used throughout, great care is given to an accurate pres-
entation of facts.

Part I is devoted to pre-relativity physics and the reasons for its break-
down. The remainder of the book discusses Einstein’s special and
general theories of relativity, which rescued physics from the contra-
dictions of classical Newtonian theory. Throughout, d’Abro touches
on the contributions of Riemann, Weyl, Lorentz, Planck, Eddington,
Maxwell, Hertz, and many others to modern relativity physics. He
closes with a philosophical discussion of the methodology of science
and of the general significance of the theory of relativity.

Revised, corrected 2nd (1950) edition. Author’s prefaces and fore-
word. Appendix: The Space and Time Graphs. 15 portraits of cele-

brated physicists. 21 diagrams. 481pp. 5% x 8. 20002-7 Paperbound

A DOVER EDITION DESIGNED FOR YEARS OF USE!

We have made every effort to make this the best boolg_-@ossiblq. (o]0 ES—
paper is opaque, with minimal show-through; it will not discoler Y

or become brittle with age. Pages are sewn in siﬁatures, in_the

method traditionally used for the best books, and’ will not drop = <
out, as often happens with paperbacks held together with glue. 1
Books open flat for easy reference. The binding will not crack or -
split. This is a permanent book.

opoay L Aq pauSsap 1940)

—
@ $6.00 in USA. |




THE EVOLUTION OF
SCIENTIFIC THOUGHT

FROM NEWTON TO EINSTEIN

By A. d’Abro

Second Edition Revised and Enlarged

Dover Publications, Inc., New York



Copyright © 1927 by Boni & Liveright, Inc.

Copyright © 1950 by A. d’Abro.

All rights reserved under Pan American and In-
ternational Copyright Conventions.

Published in Canada by General Publishing Com-
pany, Ltd., 30 Lesmill Road, Don Mills, Toronto,
Ontario.

This Dover edition, first published in 1950, is a
revised and enlarged version of the work originally
published in 1927 by Liveright Publishing Corpora-
tion. This work is reprinted by special arrange-
ment with Liveright Publishing Corporation.

International Standard Book Number: 0-486-20002-7
Library of Congress Catalog Card Number: 50-9480

Manufactured in the United States of America
Dover Publications, Inc.
180 Varick Street
New York, N. Y. 10014



PREFACE

TO THE FIRST EDITION

ALTHOUGH in the course of the last three centuries scientific theories
have been subject to all manner of vicissitude and change, the governing
motive that has inspired scientists has been ever the same—a search
for unity in diversity, a desire to bring harmony and order into what
might at first sight appear to be a hopeless chaos of experimental facts.

In this book the essential features of Newton’s great discoveries, the
apparent inevitableness of absolute space and time in classical science,
are passed in review. Then we come to Riemann, that great mathematician
who wrested the problem of space from the dogmatic slumber where
it had rested so long. Finally we see how Einstein succeeded in trans-
porting to the realm of physics the ideas that Riemann had propounded,
giving us thereby that supreme achievement of modern thought, the theory
of relativity.

Although I have used non-technical language, great care has been given
to an accurate presentation of facts. In certain parts, however, notably
in those devoted to non-Euclidean geometry and to the principle of
Action, a looseness of presentation has appeared unavoidable owing to
the extreme technicality of the subjects discussed. But as it was a ques-
tion of presenting these subjects loosely or leaving them out of the picture
entirely, it appeared preferable to sacrifice accuracy to general compre-
hensiveness.

Here, however, the reader may be reminded that even for those who
are interested solely in trends of thought or in the evolution of ideas,
no popular or semi-popular book can ever aspire to take the place of the
highly technical mathematical works. The superiority of the latter lies
not in the bare mathematical formulz which they contain. Rather does
it reside in the power the mathematical instrument has of giving us a
deeper insight into the problems of nature, revealing unsuspected har-
monies and extending our survey into regions of thought whence the
human intelligence would otherwise be excluded. Thus the sole réle
a semi-popular book can hope to perform is to serve as a general intro-
duction, to whet the appetite for further knowledge, if a craving for
knowledge is within us. To presume, as the philosophers do, that a vague
understanding of a highty technical subject, gleaned from semi-popular
writings, or from the snatching at a sentence here and there in a technical
book, should enable them to expound a theory, criticise it, and, worse still,
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vi PREFACE

ornament it with their own ideas, is an opinion which has done much
to create a spirit of distrust towards their writings. The answer Euclid
gave to King Ptolemy, “There is no royal road, no short cut to knowl-
edge,” remains true to-day, still truer than in the days of ancient Alex-
andria, when science had not yet grown to the proportions of a mighty
tree.

I wish to take this opportunity to express my gratitude to Prof. Leigh
Page of Yale University for his kindness in looking over the manuscript
and offering many valuable suggestions.

A.»’ ABrRO
New Yorx, 1927.

TO THE SECOND EDITION

Siips and errors that were present in the first edition have been corrected
in the present edition, and some unnecessary repetitions have been elimi-
nated. The chapter on the finiteness of the Universe has been re-written
entirely, and has been supplemented by a brief discussion of the Expanding
Universe of the Abbé Lemaitre.

A.p’ ABro
New York, 1949.
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FOREWORD

“And now, in our time, there has been unloosed a cataclysm which has swept away
space, time and matter, hitherto regarded as the firmest pillars of natural science,
but only to make place for a view of things of wider scope, and entailing a deeper
vision.”

H. Wevr (“Space, Time and Matter”).

THE theory of relativity represents the greatest advance in our under-
standing of nature that philosophy has yet witnessed.

If our interest is purely philosophical, we may wish to be informed
briefly of the nature of Einstein’s conclusions so as to examine their
bearing on the prevalent philosophical ideas of our fime. Unfortunately
for this simplified method of approach, it is scarcely feasible. The con-
clusions themselves involve highly technical notions and, if explained in
a loose, unscientific way, are likely to convey a totally wrong impression.
But even assuming that this first difficulty could be overcome, we should
find that Einstein’s conclusions were of so revolutionary a nature, entailing
the abandonment of our ideas on space, time and matter, that their ac-
ceptance might constitute too great a strain on our credulity. Either
we would reject the theory altogether as a gigantic hoax, or else we
should have to accept it on authority, and in this case conceive it in a
very vague and obscure way.

From a perusal of the numerous books that have been written on the
subject by a number of contemporary philosophers, the writer is firmly
convinced_ that the only way to approach the theory, even if our interest
be purely philosophical, is to study the scientific problem from the begin-
ning. And by the beginning we refer not to Einstein’s initial paper
published in 1905; we must go back much farther, to the days of
Maxwell and even of Newton. Here we may mention that however
revolutionary the theory of relativity may appear in its philosophical
implications, it is a direct product of the scientific method, conducted in
the same spirit as that which inspired Newton and Maxwell; no new
metaphysics is involved. Indeed Einstein’s theory constitutes but a
refinement of classical science; it could never have arisen in the absence
of that vast accumulation of mathematical and physical knowledge which
had been gathered more especially since the days of Galileo. Under the
circumstances it is quite impossible to gain a correct impression of the
disclosures of relativity unless we first acquaint ourselves with the dis-
coveries of classical science prior to Einstein’s time. It will therefore
be the aim of this book, before discussing Einstein’s theory proper, to
set forth as simply as possible’ this necessary preliminary information.

Modern science, exclusive of geometry, is a comparatively recent creation

X



x FOREWORD

and can be said to have originated with Galileo and Newton. Galileo was
the first scientist to recognise clearly that the only way to further our
understanding of the physical world was to resort to experiment. How-
ever obvious Galileo’s contention may appear in the light of our present
knowledge, it remains a fact that the Greeks, in spite of their proficiency
in geometry, never seem to have realised the importance of experiment
(Democritus and Archimedes excepted).

To a certain extent this may be attributed to the crudeness of their
instruments of measurement. Still, an excuse of this sort can scarcely be
put forward when the elementary nature of Galileo’s experiments and ob-
servations is recalled. Watching a lamp oscillate in the cathedral of
Pisa, dropping bodies from the leaning tower of Pisa, rolling balls down
inclined planes, noticing the magnifying effect of water in a spherical
glass vase, such was the nature of Galileo’s experiments and observations.
As can be seen, they might just as well have been performed by the Greeks.
At any rate, it was thanks to such experiments that Galileo discovered
the fundamental law of dynamics, according to which the acceleration
imparted to a body is proportional to the force acting upon it.

The next advance was due to Newton, the greatest scientist of all time
if account be taken of his joint contributions to mathematics and physics.
As a physicist, he was of course an ardent adherent of the empirical
metheod, but his greatest title to fame lies in another direction. Prior
to Newton, mathematics, chiefly in the form of geometry, had been studied
as a fine art without any view to its physical applications other than in
very trivial cases.* But with Newton all the resources of mathematics
were turned to advantage in the sdlution of physical problems. Thence-
forth mathematics appeared as an instrument of discovery, the most
powerful one known to man, multiplying the power of thought just as
in the mechanical domain the lever multiplied our physical action. It is
this application of mathematics to the solution of physical problems,
this combination of two separate fields of investigation, which constitutes
the essential characteristic of the Newtonian method. Thus problems
of physics were metamorphosed into problems of mathematics.

But in Newton’s day the mathematical instrument was still in a very
backward state of development. In this field again Newton showed the
mark of genius, by inventing the integral calculus. As a result of this
remarkable discovery, problems which would have baffled Archimedes were
solved with ease. We know that in Newton’s hands this new departure in
scientific method led to the discovery of the law of gravitation. But
here again the real significance of Newton’s achievement lay not so much
in the exact quantitative formulation of the law of attraction, as in his
having established the presence of law and order at least in one important
realm of nature, namely, in the motions of heavenly bodies. Nature

* As exemplified in the Pythagorean discovery of the relationship between the
length of a vibrating string and the pitch of its note, a discovery utilised in musical
instruments. Another example is represented by Archimedes’ solution of the problem
of Hieron’s gold tiara.
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thus exhibited rationality and was not mere blind chaos and uncertainty,
To be sure, Newton’s investigations had been concerned with but a
small group of natural phenomena (planetary motions and falling bodies),
but it appeared unlikely that this mathematical law and order should
turn out to be restricted to certain special phenomena; and the feeling
was general that all the physical processes of nature would prove to
be unfolding thémselves according to rigorous mathematical laws. .

It would be impossible to exaggerate the importance of Newton’s dis-
coveries and the influence they exerted on the thinkers of the eighteenth
century. The proud boast of Archimedes was heard again—“Give me
a lever and a resting place, and I will lift the earth.”—But the boast of
Newton’s successors was far greater—“Give us a knowledge of the laws of
nature, and both future and past will reveal their secrets.”

To-day these hopes appear somewhat childish, but this is because we
have learnt more of nature than was ever dreamt of by Newton’s con-
temporaries. Nevertheless, although we recognise that we can never
be demigods, the mathematical instrument in conjunction with the experi-
mental method, still constitutes our most fruitful means of progress.

Now Newton, in his application of mathematics to the problems of
physics, had been concerned only with the very simplest of physical
problems—planetary motions, mechanics, propagation of sound, etc. But
when it came to applying the mathematical method to the more intricate
physical problems, a considerable advance was necessary in our scientific
knowledge, both mathematical and empirical. Thanks to the gradual ac-
cumulation of physical data, and thanks to the efforts of Newton’s great
successors in the field of pure mathematics (Euler, Lagrange, Laplace),
conditions were ripe in the first half of the nineteenth century for a
systematic mathematical attack on many of nature’s secrets.

The mathematical theories constructed were known under the general
name of theories of mathematical physics. In so far as they represented
a mere application of mathematics to natural phenomena, they had their
prototype in Newton’s celestial mechanics. The only difference was that
they dealt with a wide variety of physical phenomena (electric, hydro-
static, etc.), no longer with those of a purely mechanical nature. The most
celebrated of these theories (such as those of Maxwell, Boltzmann, Lorentz
and Planck) were concerned with very special classes of phenomena.
But with Einstein’s theory of relativity, itself a development of mathe-
matical physics, the scope of our investigations is so widened that we
are appreciably nearer than ever before to the ideal of a single mathe-
matical theory embracing all physical knowledge. This fact in itself
shows us the tremendous philosophical interest of the theory of relativity.

Now in all these theories of mathematical physics, the same type of
procedure is invariably followed. Experimenters establish certain definite
facts and detect precise numerical relationships between magnitudes, for
example, between the intensity of an electric current flowing along a wire
and the intensity and orientation of the magnetic field surrounding the
wire. The mathematical physicist then enters upon the scene, assigns
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certain letters of the alphabet to the physical entities involved (in the
present case electric current designated by i and magnetic intensity
designated by H) and by this means translates the numerical relation-
ships discovered by the experimenter into mathematical form. He thus
obtains a mathematical relationship or equation a which is assumed
to constitute the mathematical image of the concrete physical phenomenon
A. His task will now be to extract from his mathematical equation or
equations a all their necessary mathematical consequences. In this
way, provided his technique does not fail him, he may be led to new
equations §. These new equations 8, when translated back from the
mathematical to the physical, will express new physical relationships B.

The mathematician assumes that just as his equations f were the
necessary mathematical consequences of his original equations a, so
also must the physical translation of § constitute a physical phenomenon
B, which follows as a necessary consequence of the existence of the
physical phenomenon 4. If 4 occurs, B must ensue.

We thus understand the significance of a theory of mathematical
physics. Its utility is to allow us to foresee and to foretell physical
phenomena. In this way it suggests definite experiments which might
never have been thought of, and permits us to anticipate new relationships
and new laws and to discover new facts. From a philosophical point of
view, by establishing a rational connection between seemingly uncon-
nected phenomena, it enables us to detect the harmony and unity of
nature which lie concealed under an outward appearance of chaos.

Of course the experimenter in the first place must be very careful to
give accurate information to the mathematician; for if by any chance
his information should be only approximately correct, the mathematical
translation a would likewise be lacking in accuracy, and the mathematical
consequences of a might be still further at variance with the world
of physical reality. It is as though, when firing at a distant target, we
were to point the rifle a wee bit too far to one side; the greater the
range, the wider would be the divergence. Dangers of this sort are of
course inevitable, for human observations are necessarily imperfect. 1In
any case, therefore, the mathematician’s physical anticipations will always
require careful checking up by subsequent experiment. Obviously, how-
ever, something much deeper is at stake than mere accuracy of observation.

Mathematical deductions are mind-born; they pertain to reason and
are not dependent on experience. When, therefore, we assume that our
mathematical deductions and operations will be successful in portraying
the workings of nature, we are assuming that nature also is rational,
and that therefore a definite parallelism or correspondence exists between
the two worlds, the mathematical and the physical. A priori, there
appears to be no logical necessity why any such parallelism should exist.
Here, however, we are faced with a situation over which it is useless to
philosophise. Success has attended the efforts of mathematical physicists
in so large a number of cases that, however marvellous it may appear, we
can scarcely escape the conclusion that nature must be rational and sus-
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ceptible to mathematical law. In fact, were this not the case, prevision
would be impossible and science non-existent.

It may be that nature is only approximately rational; it may be that
her appearance of rationality is due to the very crudeness of our observa-
tions and that more refined experiments would yield a very different
picture. Heisenberg and Bohr have suggested that the difficulties which
confront us in the study of quantum phenomena may indeed be due
to the fact that nature is found to be irrational when we seek to examine
her processes in a microscopic way. This is a possibility which we cannot
afford to reject. But at any rate, as long as our theories appear to be
verified by experiment, we must proceed as though nature were rational,
and hope for the best.

Now it must not be thought that the introduction of the mathematical
instrument into our study of nature creates any essential departure from
the commonplace method of ordinary deductive and inductive reasoning.
There is no particular mystery about mathematical analysis; its only
distinguishing feature is that it is more trustworthy, more precise, and
permits us to proceed farther and along safer lines.

Consider, for example, the well-known change of colour from red to
white displayed by the light radiated through an aperture made in a
heated enclosure, as the temperature increases. From this elementary fact
of observation Planck, thanks to mathematical analysis, was able to de-
duce the existence of light quanta and thence the possibility that all
processes of change were discontinuous, and that a body could only
rotate with definite speeds. Obviously, commonplace reasoning unaided
by mathematics would never have led us even to suspect these extraor-
dinary results.

Now when we say that a theory of mathematical physics is correct,
all we mean is that the various mathematical consequences we can extract
from its equations call for the existence of physical phenomena which
experiment has succeeded in verifying. On the other hand, if our mathe-
matical anticipations do not tally with experimental verification, we must
recognise that our theory is incorrect. This does not mean that it is
incorrect from a purely mathematical point of view, for in any case it
exemplifies a possible rational world: but it is incorrect in that it does not
exemplify our real world. We must then assume that our initial equa-
tions were in all probability bad translations of the physical phenomena
they were supposed to represent.

In a number of cases, however, it has been found unnecessary to
abandon a theory merely because one of its anticipations happened to
be refuted by experiment. Instead, it is often possible to assume that
the discrepancy between the mathematical anticipation and the physical
result may be due to some contingent physical influence, which, owing
to the incompleteness of the physical data furnished us by the experi-
menters, our equations have failed to take into consideration. A case
in point is afforded by the discovery of Neptune.

The Newtonian mathematical treatment of planetary motions assigned
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a definite motion to the planet Uranus. Astronomical observation then
proved that the actual motion of Uranus did not tally with these mathe-
matical anticipations. Vet it was not deemed necessary to abandon
Newton’s law; Adams and Leverrier suggested the possibility that an
unknown planet lying beyond the orbit of Uranus might be responsible
for the deviations in Uranus’ motion. Taking the existence of this un-
known planet into consideration in his mathematical calculations, Lever-
rier succeeded in determining the exact position which it would have to
occupy in the heavens at an assigned date. As is well known, at the pre-
cise spot calculated, the elusive planet (presently named Neptune) was
discovered with a powerful telescope.

This procedure of ascribing discrepancies in our mathematical antici-
pations to the presence of contingent influences rather than to the falsity
of our theory is only human. There is no inclination, merely because
the hundredth case turns out to be an exception, to abandon a theory
which has led to accurate anticipations in g9 cases out of 100. But we
must realise that this procedure of appealing to foreign influences, while
perfectly legitimate in a tentative way, must be applied with a certain
amount of caution; in every particular case it must be justified by a
posteriori determination of fact. Thus Leverrier was also the first to
discover certain irregularities in the motion of the planet Mercury. As
in the case of Uranus, he attempted to ascribe these discrepancies to
the presence of an interior planet which he called Vulcan and which he
assumed to be moving between the orbit of Mercury and the sun.
Astronomers have, however, failed to find the slightest trace of Vulcan,
and a belief in its existence has been abandoned. If contingent influences
are to be invoked for Mercury’s anomalies, we must search for them
in some other direction.

In this particular case all other suggestions were equally unsatisfactory.
Hence even before the advent of Einstein’s theory, doubts had been
raised as to the accuracy of Newton’s law of gravitation. The procedure
of patching up a mistaken theoretical anticipation with hypotheses ad koc
has not much to commend it. Yet when, as was the case with Vulcan
and Neptune, the influence we appeal to is of a category susceptible of
being observed directly, the method is legitimate. But when our hypothesis
ad hoc transcends observation by its very nature, and when, added to
this, its utility is merely local, accounting for one definite fact and for
no other, it becomes worse than useless.

This abhorrence of science for the unverifiable type of hypothesis
ad koc so frequently encountered in the speculations of the metaphysicians
is not due to a mere phenomenalistic desire to eliminate all that can-
not be seen or semsed. It arises from a deeper motive entailing the
entire raison d’étre of a scientific theory. Suppose, for instance, that
our theory had led us to anticipate a certain result, and that experi-
ment or observation should prove that in reality a different result was
realised. We could always adjust matters by arbitrarily postulating
some local invisible and unverifiable influence, which we might ascribe to
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the presence of a mysterious medium—say, the ether 4. We should
thus have added a new influence to our scheme of nature.

If we should now take this new influence into consideration, the first
numerical result would, of course, be explained automatically, since our
ether 4 was devised with this express purpose in view. But we should
now be led to anticipate a different numerical result for some other phe-
nomenon. If this second anticipation were to be disproved by experiment
we could invoke some second unverifiable disturbing influence to account
for the discrepancy, while leaving the first result unchanged. Let us call
this new influence the ether B. We might go on in this way indefinitely.

But it is obvious that our theory of mathematical physics whose object
it was to allow us to foresee and to foretell would now be useless. No
new phenomenon could be anticipated, since past experience would have
shown us that unforeseen influences must constantly be called into play
if theory were to be verified by experiment. Under these circumstances
we might just as well abandon all attempts to construct a mathematical
model of the universe.

Suppose now that by modifying once and for all our initial premises
we are led to a theory which allows us to foresee and foretell numerical
results that are invariably verified with the utmost precision by experi-
ment, without our having to call to our assistance a number of foreign
hypotheses. In this case we may assume that the new theory is correct,
since it is fruitful; and that our former theory was incorrect, because it
led us nowhere.

The considerations we have outlined have an important bearing on
the understanding of the outside world as shared by the vast majority
of scientists. If we hold that the simplest of all the mathematical theories
which finds itself in accord with experiment constitutes the correct theory,
giving us the correct representation of the real world, we shall recognise
that it would be a dangerous procedure to saddle ourselves with a number
of hypothetical presuppositions at too early a stage of our investigations.

To be sure, we may have to make a certain number of fundamental
assumptions, but we must regard these as mere working hypotheses
which may have to be abandoned at a later stage if peradventure they
lead to too complicated a synthesis of the facts of experiment. We shall
see, for instance, that relativity compels us to abandon our traditional
understanding of space and time. It is this fact moré than any other
which has been responsible for the cool reception accorded to the theory
by many thinkers. When, however, we become convinced that Ein-
stein’s synthesis is the simplest that can be constructed if due account
be taken of the results of ultra-refined experiment, and when we realise
that a synthesis based on the classical understanding of separate space
and time would be possible only provided we were willing to introduce a
host of entirely disconnected hypotheses ad khoc which would offer no
means of direct verification, we cannot easily contest the soundness of
Einstein’s conclusions.

There are some, however, who argue that we have an a priori intuitional
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understanding of space and time which is fundamental, and that we
should sacrifice simplicity of mathematical co-ordination if it conflicts
with these fundamental intuitional notions. Needless to say, no scientist
could subscribe to such views. Quite independently of Einstein’s dis-
coveries, mathematicians had exploded these Kantian opinions on space
and time many years ago. As Einstein very aptly remarks in his Prince-
ton lectures:

“The only justification for our concepts and system of concepts is that
they serve to represent the complex of our experiences; beyond this they
have no legitimacy. I am convinced that the philosophers have had a
harmful effect upon the progress of scientific thinking in removing certain
fundamental concepts from the domain of empiricism where they are
under our control to the intangible heights of the a priori. For even if
it should appear that the universe of ideas cannot be deduced from experi-
ence by logical means but is in a sense a creation of the human mind
without which no science is possible, nevertheless this universe of ideas
is just as little independent of the nature of our experiences as clothes
are of the form of the human body. This is particularly true of our con-
cepts of time and space which physicists have been obliged by the
facts to bring down from the Olympus of the a priori in order to adjust
them and put them in a serviceable condition.”

In the passage just quoted, Einstein argues from the standpoint of the
physicist, but the opinions he expresses will certainly be endorsed by
pure mathematicians. They, more than all others, have been led to
realise how cautious we must be of the dictates of intuition and so-called
common sense. They know that the fact that we can conceive or imagine
a certain thing only in a certain way is no criterion of the correctness
of our judgment. Examples in mathematics abound. For example, before
the discoveries of Weierstrass, Riemann and Darboux the idea that a con-
tinuous curve might fail to have a definite slant at every point was
considered absurd; and yet we know to-day that the vast majority of
curves are of this type. In the same way our intuition would tell us
that a line, whether curved or straight, being without width, would be
quite unable to cover an area completely; yet once again, as Peano and
others have shown, our intuition would have misled us. Many other
examples might be given, but they are of too technical a nature and need
not detain us. At all events, mathematicians, as-a whole, refused to ques-
tion the soundness of Einstein’s theory on the sole plea that it conflicted
with our traditional intuitional concepts of space and time, and we need
not be surprised to find Poincaré, one of the greatest mathematicians
of the nineteenth century, lending full support to Einstein when the
theory was so bitterly assailed in its earlier days.

We have now to consider in a very brief way certain of the philosophical
problems which antedate Einstein’s discoveries, but with which his theory
is intimately connected. Long before the advent of Einstein, problems
pertaining to the relativity of motion through empty space had occupied
the attention of students of nature. There were some who held that
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empty space, and with it all motion, must be relative; that states of
absolute motion or absolute rest through empty space were meaningless
concepts. According to these thinkers, in order to give significance to
motion and rest, it was necessary to refer the successive positions of
the body to some other arbitrarily selected body taken as a system of
reference. We should thus obtain relative rest or motion of matter, with
respect to matter. All these views were in full accord with our visual
perceptions and they were expressed by what is known as the visual or
kinematic principle of the relativity of motion. Other thinkers pre-
ferred to uphold the opposing philosophy. They assumed that space
was absolute; that all motion must be absolute; that there was meaning
to the statement that a body was in motion or at rest in space, regardless
of the presence of other bodies to be used as terms of comparison. The
controversy might have continued indefinitely, had it not been for the
appearance of the scientist with his empirical methods of investigation.

Galileo and Newton were the first to recognise in a clear way that,
provided certain very plausible assumptions were made, the dynamical
evidence adduced from mechanical experiments proved the relativistic
philosophy to be untenable. Classical science was therefore compelled
to recognise the absoluteness of space and motion. It is true that many
philosophers still defended the relativity of all motion. But their failure
to take into consideration the real obstacles that seemed to bar the way
to a relativistic conception of motion, coupled with the looseness of their
scientific arguments, precluded their opinions from exercising any influence
on scientific thought. Now it is to be noted that notwithstanding the
absolute nature which Newton attributed to all states of motion and of
rest in empty space, a certain type of absolute motion called Galilean *
or again uniform translationary motion (defined by an absolute velocity
but no absolute acceleration), was recognised by him as being incapable
of detection, so far as experiments of a mechanical nature were con-
cerned. This complete irrelevancy of absolute velocity or absolute Gali-
lean motion to mechanical experiments was expressed in what is known as
the Galilean or Newtonian or classical or dynamical principle of the
relativity of Galilean motion through empty space. The existence of
such a principle of relativity created a duality in the physical significance
of motion, hence of space, but the philosophical importance of the prin-
ciple, as referring to the problem of space, was lessened by the fact
that this relativity applied solely to experiments of a mechanical nature.
It was confidently assumed that electromagnetic and optical experi-
ments would be successful in revealing the absolute Galilean motions
which had eluded mechanical tests.

Such was the state of affairs when Einstein, in 1905, published his
celebrated paper on the electrodynamics of moving bodies. In this he
remarked that the numerous difficulties which surrounded the equations

* The appellation Galilean motion does not appear to have been adopted generally.
However, as it is shorter to designate “uniform translationary motion” under this
name, we shall adhere to the appellation.



