Thmklng
Recursively

ERIC ROBERTS

nQ /
ecurswel

*RIC ROBERTS

‘partment of Computer Science
llesley College, Weliesley, Mass.

»

JOHN WILEY & SONS, INC.

New York - Chichester - Brisbane - Toronto - Singapore

Copyright © 1986, by John Wilcy & Sons, Hc~

—

All rights reserved. Published simyftaneously in Canady

Reproduction or translation of any part of this work
beyond that permitted by Section§ 107 or 108 of the 1976
United States Copyright Act without the permission ofithe
copyright owner is unlawful. Requests for permission or
further information should be addressed to the Permissions
Department, John Wiley & Sons, In¢

.. Library of Congress Cataloging in Publication Data:

Roberts, Eric.
Thinking recursively. -

Bibliography: p.
Includes index.
. 1. Recursion theory. 1. Title.
QA9.6.R63 1985 5113 85-20365
ISBN 0-471-81652-3

Printed in the United States of America

10987654321

. gt

\

In ny experience, teaching students to use recursion has always been a difficult
task, When it is first presented, students often react with a certain suspicion
to th¢ entire idea, as if they had just been exposed to some conjurer’s trick

rather than a new programming methodology. Given that reaction, many stu-

dents never learn to apply recursive techniques and proceed to more advanced
courses umable to write programs which depend on the use of recursive Strat-
egies. This book is intended to demystify this material and encourage the
student to ‘‘think recursively.” '

This book is intended for use as a supplementary text in an intermediate
course in data structures, but it could equally well be used with many other
courses at this level. The only prerequisite for using this text is an introductory
programming course. Since Pascal is used in the programming examples, the
student must also become familiar with Pascal programming, although this can
easily be included as part of the same course. To support the concurrent pre-.

. sentation of Pascal and the material on recursion, the programming examples

* conceptual model. In particular, this chapter covers mathematical induction -.

in the early chapters require only the most basic features of Pascal.

In order to develop a more complete understanding of the topic, it is
important for the student to examine recursion from several different perspec-
tives. Chapter ‘1 provides an informal overview which examines the use of

recursion outside the context of programming. Chapter 2 examines the under-

lying mathematical concepts and helps the student’ develop an appropriate’

and computational complexity in considerable detail. This discussion is de-
signed to be nonthreatening to the math-anxious student and, at the same time,

include enough formal structure to emphasize the extent to ‘which computer

science depends on mathematics for its theoretical foundations.
Chapter 3 applies the technique of recursive decomposition to various
mathematical functions and begins to show how recursion is represented in

]
i

Pascal. Chapter 4 continues this discussion in the contexf of recursive proce-

£ \

vii

Preface

viti

dures, emphasizing the parallel between recursive decomposition and the more
familtar technique of stepwise refinement. »

Chapters § through 9 present several examples of the use of recursion to
solve increasingly sophisticated problems. Chapter 7 is of particular importance
and covers recursive sorting techniques, illustrating the applicability of the
recursion methodology to practical problem domains. Chapter 9 contains many
delightfu] examples, which make excellent exercises and demonstrations if
. graphical hardware is available.

Chapter 10 examines the use of recursive procedures in the context of
recursive data structures and contains several important examples. Structur-
ally, this chapter appears late in the text primarily to avoid introducing pointers
prematurely. For courses in which the students have been introduced to point-
ers relatively early, it may be useful to cover the material in Chapter 10 im-
mediately after Chapter 7.

Finally, Chapter 11 ¢xamines the underlying implementation of recursion
and provides the final link in removing the mystery. On the other hand, this
material is not essential to the presentation and may interfere with the student's
conceptual understanding if presented too early.

I am deeply gratéful for the assistance of many people who have helped
to slgpe the final form of the text. I want to express a special note of appre-
ciation to Jennifer Friedman, whose advice has been invaluable in matters of
both substance and style. I would also like to thank my colleagues on the
Wellesley facuity, Douglas Long, K. Wojtek Przytula, Eleanor Lonske, James
Finn, Randy Shull, and Don Wolitzer for their support. Joe Buhler at Reed
College, Richard’ Pattis at the University of Washington, Gary Ford at the
University of Colorado at Colorado Springs, Steve Berlin at M.1.T., and Suz-
anne Rodday (Wellesley ’85) have all made important suggestions that have
dramatically improved the final result.

Eric Roberts

Contents

Prefage

-The Idea of Recursion

X

1-1 An Illustration of the Recurswe Approach
1-2 Mondrian and Computer Art 4

1-3 Characteristics of Recursive Algorithms
1-4 Nonterminating Recursion -, .
“1-5 Thinking about Recursion—Two Perspectives .

. Mathematical Preliminaries

2-1 Mathematical Induction
2-2 Computational Complexity

kS

" Recursiye Functions
3-1 Functional vs. Procedural Recursion

32 Factorials
3-3 The Fibon'acci Sequence -

32

4-1 Numenc Output

\ 4—2 Generatmg a Primer !
' ey

I

o

49

8

14

el

36

The Procedural Approach PO

19

32

1

7 .

9

13,

31

10

11

The Tower of Hanoi
5-1 The Recursive Solution 64
5-2 The Reductionistic View 67

Permutations

Sorting

7-1 Selection Sorting 85

7-2 Merge Sorting 89

Intelligent Algorithms .

8-1 Backtracking through a Méze 104
8-2 Lookahead Strategies - /13
Graphical Applications

9-1 Computer Graphics in Pascal 126
92 Fractal Geometry 128‘_ .
Recursive Data. -

10-1 Representing Strings as Linked Lists
10-2 Binary Trees 145

. 10-3 Expression Trees 152

Implementation of Recursion

11-1 The Control Stack Model /61 .

11-2 Simulacing Recursioh 166
Bibliography. 175

Index 177

Contents

63

75

83

103

124

139
141

- 161

4

The Idea of Recursion

Of all ideas | have introdi'ced to children, recursion stands out as the

one idea that is particularly able to evoke an excited response.
—Seymour Papert, Mindstorms

At its essence, computer science is the study of problems and their solutions.
More specifically, computer science is concerned with finding systematic pro-
cedures that guarantee a correct solution to a given problem. Such procedures
are called algorithms.

This book is about a particular class of algorithms, called recursive al-
gorithms. which turn out to be quite important in computer science. For many
problems, the use of recursion makes it possible to solve complex problems
using programs that are surprisingly concise, easily understood, and algorithm-
ically efficient. For the student seeing this material for the first time, however,
recursion appears to be obscure, difficult, and mystical. Unlike other problem-
solving techniques which have closely related counterparts in everyday life,
recursion is an unfamiliar idea and often requires thinking about problems in
a new and different way. This book is designed to provide the conceptual tools
necessary to approach problems from this recursive point of view.

Informally, recursion is the process of solving a large problem by reducing
it to one or more subproblems which are (1) identical in structure to the original
problem and (2) somewhat simpler to solve. Once that original subJdivision has
been made, the same decompositional technique is used to divide each of these
subproblems into new ones which are even less complex. Eventually, the sub-
problems become so simplé that they can be then solved without further sub-
division, and the complete solution is obtained by reassembling the solved

components.

1-1 An Hlustration of the Recursive quroach

Imagine that you have recently accepted the position of funding coordinator
for a local election campaign and must raise $1000 from the party faihful. In
this age of political action committees and ‘direct mail appeals, the easiest

¥

2 ; : | . fhinking Recursively

approach is to find a single donor who will contribute the entire amount. On
the other hand, the senior campaign s teglsts (fearing tl at this mlght be
interpreted as a lack of commitment to der ocratic values) ; :
. the entire amount be raised in conmbutkms of exactly $1. “How would you
.proceed? i

Certainly, one solution to this proble‘m is to go out into the commumty,
~ find 1000 supporters, and solicit $1 from gach In programming terms, such a

solution bds the follown{g general structute

PROCEDURE COLLECTIOOO;
‘BEGIN FOR 1 := 1 TO 1000 DO
Collect ene dollar from person I
END;

Since this is based on an explicit loop construction, it is called an iterative
solution.

Assuming that you can find a thousand people entlrely on your own, this
_solution would be effective, but it is not likely to be easy. The entire process
would be considerably less exhausting if it were possible to divide the task into
smaller components, which can then be delegated to other volunteers. For

" example, you might enlist the aid of ten people and charge each of them with
the task of raising $100. From the perspective of each volunteer, the new
problem has exactly the same form as the original task. The only thing which
has changed is the dimension of the problem. Instead of collecting $1000, each .
volunteer must now collect only $100—presumably a simpler task.

~ The essence of the récursive approach lies in applying this same decom-
position repeatedly at each stage of the solution. Thus, each volunteer who
_must collect $100 finds ten people who will raise $10 each. Each of these, in
turn, finds ten others who agreg to raise $1 At this point, however, we can
adopt a new strategy. Since the campalgn can accept $1 contributions, the
_problem meed not be subdivided, further mto dimes and pennies, and the vol-
gmeer can s1mply contribute the. necessary dollar. In the parlance of recursion,
N represents a simple case for the fund-raising problem, which means that it
¢an be solved directly without further decomposmon

_ ‘V " Solutions which operate in this way. are often referred to as *‘divide-and-

;onquer strategnes since they depend on splitting a problem into more man-
igeable components.- The original problem divides to form several simpler

" subproblems, which, in turn, ‘‘branch’’ into a set of simpler ones, and so on,
, until the simple cases are reached. If we¢ represent this process diagrammati-
cally we obtam a solution tree for the ptoblem

,2“ .

,‘N Gt

Y
@
.

\ oL \ ; . 7 €.
8100 ¢ $100 ST00- ¢ loi",'.
7 . i 12 ® ¥ . A',

- \V'Mapﬁdh§ J‘h\'ﬁmk& JINN |

$70 $i0 sio sio. sfo- | 10 - si0 s10° .

" AMM/A\M\SIO MM\M\M

8T 81,51 1S1.-81 $1-. Sbi $hor Sl ST

i/

In order to represent this algorithm in a form more suggestive of & pro-’
gramming language, it is important to notice that there are several different
instances of a remarkably similar problem. In the specific case shown here,
we have the independent tasks *‘collect $1000’, *“collect $100’", ‘“collect $10”’:
and “‘collect $17, corresponding to the different levels of the hierarchy, Al-
though we could represent each of these as a separate procedure, such an.
approach would fail to take advantage of the structural similarity of each prob-
lem. To exploit that similarity, we must first generalize the problem to the task
of collegting, not spme specific amount, but an undetermined sum of money,
represented by the symbol N. = " %

The task of collecting N dollars can then be broken down into two cases.
First, if N is $1, we simply contribute the money ourselves. Alternatively, we
find ten volunteers and assign each the task of collecting one-tenth the total
revenue. This structure is illustrated by the procedure skeleton shown below:

. PROCEDURE COLLECT(N);
BEGIN
IF N is $1 THEN
Contribute the dollar directly
ELSE :
BEGIN
Find 10 people;
Have each collect N/10 dollars;
Return the money to your superior
; END ?
END;

L3 Thinking Recursively

The structure of this ‘‘program’’ is typical of recursive algorithms represented
in a programming language. The first step in a recursive procedure consists of
a test to determine whether or not the current problem represents a simple
case. If it does, the procedure handles the solution directly. If not, the problem
is divided :nto subproblems, each of which is solved by applying the same
recursive s rategy. In this book, we will consider many recursive programs
that solve problems which are considerably more detailed. Nonetheless; all of
them will share this underlying structure.

1.2 Mondrian and Computer Art

During the years 1907 to 1914, a new phase of the modern art movement
Tourished in Paris. Given the name Cubism by its detractors, the movement
‘as based on the theory thst nature should be represented in terms of its
wimitive geometrical components, such as cylinders, cones, and spheres. Al-
10ough he Cubist c. mmunity was dissolved by the outbreak of World War I,
he ideas of the movement remained a powerful force in shaping the later
levelopment of abstract art. In particular, Cubism strongly influenced the work - _
of the Dutch painter Piet Mondrian, whose work is characterized by rigidly
geometrical patterns of horizqntal and vertical lines.

The tendency in Mondrian’s work toward simple geometrical structure
makes it particu:arly appropriate for computer simulation. Many of the early
\ttempts to generate ‘ computer art’’ were based on this style. Consider, for
:xample the following abstract design:

in this example, the design consists of a large rectangle broken up into smaller .
"¢ "tangles by a sequence of horizontal and. vertical lines.

For now, we will limit our concern to finding a general strategy for gen-
¢t ting a design of this sort and will defer the details of the actual program
a til Chapter 9, where this example is included as an exercise. To discover

7

The Idea of Recursion - 5
this strategy and understand how recursion is involved, it helps to go back to
the beginning and follow this design through its evolutio_nary*history. As withe
any work of art (however loosely the term is applied in this case), our design
started as an empty rectangular ‘‘canvas’’: .

\

The first step in the process was to divide this canvas into two smaller
rectangles with a single vertical line. From the finished drawing, we can see
that there is only one line which cuts across the entire canvas. Thus, at some
point early on in the history of this drawing, it must have appeared as follows:

)

But now what? From here the simplest way to proceed is to consider each
of the two remaining rectangles as a new empty canvas, admittedly somewhat
smaller in size. Thus, as part of the process of generating a *‘large’’ Mondnan
drawing, e have reduced our task to that of generating two “‘medium-sized’’

- 5 : Thinking Recursively

drawings, which, at least insofar as the recursive process is concerned, is a
-somewhat simpler task.

As a practical matter, we must choose one of these two subproblems first
and work on it before returning to the other. Here, for instance, we might
choose to work on the left-hand ‘‘subcanvas'’ first and, when we finish with
that, return to finish the right-hand one. For the moment, however, we can
forget about the right-hand part entirely and focus our attention on the left-
hand side. Conceptually, this is a new problem of precisely the original form
The only difference is that our new canvas is smaller in size.

Once again, we start by dividing this into two subproblems. Here, since
the figure is taller than it is wide, a horizontal division seems more appropriate, '
which gives us;

The idea of Recursion

Just as b:fore, we take one of these smaller figures and leave the other aside
for later. Note that, as we proceed, we continue to set aside Subproblems for
future solution. Accumulating a list of unfinished tasks is characteristic of
recursive processes and requires a certain amount of bookkeeping to ensure
that all of these tasks do get done at some point in the process. Ordinarily, the
programmer need not worry about this bookkeeping explicitly, since it is per-
formed automatically by the program. The details of this process are discussed ,
in Chapter 5 and again in Chapter 11. .
Eventually, however, as the rectangles become smaller and smaller, we
reach a point at which our aesthetic sense indicates that no further subdivision
is required. This constitutes the ‘‘simple case’’ for the aigorithm—when a
rectangle drops below a certain size, we are finished with that subproblem and
must return to take care of any uncompleted work. When this occurs, we simply
“consult our list of unfinished tasks and return to the one we most recently set
aside, picking up exactly where we left off. Assuming that our recursive solution
operates correctly, we will eventually complete the entire list of unfinished
tasks and obtain the final solution. .

A

A

1-3 Characteristics of Recursive Algorithms

In each of the examples given above, finding simpler subproblems within the
context of a larger problem was a reasonably easy task. These problems are
naturally suited to the divide-and-conquer strategy, making recursive solutions
particularly appropriate. ,

In most cases, the decision to use recursion is suggested by the nature of
the problem itself.* To be an appropriate candidate for recursive solution, a
problem must have three distinct properties:
*At the same time, it is important to recognize that *‘recursiveness’ is a property of the solution
to a problem and not an attribute of the problem itself. In many cases, we can take a problem,

. which_seems recursive in its structure and choose to employ an iterative solution. Similarly,
recursive techniques can be used to solve problems for which iteration appears more suitable.

Thinking Recursively

1. It must be possible to decompose the original problem into simpler
instances of the same problem. .

2. Once each of these simpler subproblems has been solved, it must be
possible to combine these solutions to produce a solution to the onginal
problem. v

3. As.the Jarge problem is broken down into successively less complex

' ones, those subproblems must eventually become so simple that they
can be solved without furthér subdivision.

For a problem with these characteristics, the recursive solution follows in
a reasonably straightforward way. The first step consists of checking to see if
the problem fits into the ‘‘simple case’ category. If it does, the problem is
solved directly. If not, the entire problem is broken down into new subsidiary
problems, each of which is solved by a recursive application of the algorithm.
Finally, each of these solutions is then reassembled to form the solution to the
original problem.

Representing this structure in a Pascal-like form gives rise to the following

template for recursive programs:

PROCEDURE SOLVE(instance);
BEGIN
IF instance is ea8y THEN
Solve problem directly
ELSE
BEGIN
Break this into new instances 11, 12, etc.;
SOLVE(11); SOLVE(I2); . .. and so forth . . .;
. Reassemble the solutions
END
END;

1-4 Nonterminating Recursion

In practice, the process of ensuring that a particular decomposition of a problem
will eventually result in the appropriate simple cases requires a certain amount
of care. If this is not done correctly, recursive processes may get locked into
cycles in which the simple cases are never reached. When this occurs, a re-
cursive algorithni fails to rerminate, and a program which is written in this way.
will contipue to run until it exhausts the available resources of the computer.
For example, suppose that the campaign fund raiser had adopted an even
lazier attitude and decided to collect the $1000 using the following strategy:

Find a single volunteer who will collect $1000.

~

The Idea of Recursion . 9

If this volunteer adopts the same strategy, and every other volunteer follows
in like fashion, the process will continue until we exhaust the available pool
of volunteers, even though no money at all will be raised. A more fanciful
exami)le of this type of failure is shown in the following song.

+

THERE’S A HOLE IN THE BUCKET
Traditional

There’s a hole in‘;(he bucket, dear Liza, dear Liza
There’s a hole in the bucket, dear Liza, a hole
Then fix it, dear Charlie, dear Charlie

Then fix it, dear Charlie, dear Charlie, fix it

With what shall 1 fix it, dear Liza, dear Liza
With a straw, dear Charlie, dear Charlie

But the straw is too long, dear Liza, dear Liza
Then cut it, dear Charlie, dear Charlie

With what shall I cut it, dear Liza, dear Liza
With a knife, dear Charlie, dear Charlie

But the knife is too dull, dear Liza, dear Liza
Then sharpen it, dear Charlie, dear Charlie

With what shall I sharpen it. dear Liza, dear Liza
With a stone, dear Charlie, dear Charlie

But the stone is too dry, dear Liza, dear Liza
Then wet it, dear Charlie, dear Charlie

With what shall 1 wet it, dear Liza, dear Liza
With water, dear Charlie, dear Charlie

But how shall I fetch it, dear Liza, dear Liza
In a‘,bucket. dear Charlie, dear Charlie

There’s a hole in the bucket, dear Liza, dear Liza,
There’s a hole in the bucket. dear Liza, a hole

' 1-5 Thinking about Recursion—Two Perspectives

The principal advantage of recursion as a solution technique is that it provides
an excellent mechanism for managing complexity. No matter how difficult a

10 .. Thinking Recursively .
problem at first appears, if we can detgruiine a way to break that problem down

into simpler problems of the same form, we can define a strategy for producing
a complete solution.. As programmers, all we need to- specifyis 3 how to
simplify a problem by recursive subdivision, (2) how to solve the simple cases,
and (3) how to reassemble.the partial solutions.

For someorie who is just learning about recursion, it is very hard to believe
that this general strategy is'powerful enough to solve a complex problem. Given
a particular problem, it is tempting to insist on seeing the solution in all its

. gory detail;‘Urifonunate}y', this has the effect of reintroducing all the complexity

_that the recursive definition was designed to conceal. By giving in to skepticism,
the usual result is that one takes a hard problem made simpler through recursion
and proceeds to make it difficult again. Clearly, this is not the optimal approach
and requires finding a new way to think about recursion.

The difference between- the perspective of the programmer with consid-
erable experience in requ’rsion'ahd that of the novice is perhaps best defined
in terms of the philosophical contrast oetween ‘holism’* and *‘reductionism."
In Godel, Escher; Bach, Douglas Hofstadter defines these concepts by means
of the following dialogue; - . * ~)

- Achilles 1 will be glad to iridi:lgé both of you, if you will first oblige me, by
telling me the"mgéaqing of these strange expressions, ‘‘holism’’ and
“‘reductionism.”’’ . :

o v

' Crab . Holism is the mbgt natural thing in the world to grasp. It's simply
. . . the belief that "«‘thc_::owhole is greater than the sum of its parts.”” No
" one in his right.mind could reject holism. :

" Anteater Reductionism is the mostAn'atural thing in the world to grasp. It’s
simply the belief that ‘‘a whole can be understood completely if you
- understand its parts, and the nature of their ‘sum’.”” No one in her

- - left brain-could reject reductionism.

Even though recursion acts -as a reductionistic process in the sense that

-each problem is reduced to a sum of its parts, writing recursive programs tends
" to require a holistic view of the process. It is the big picture which is important,

not the details. In developing a *‘recursive instinct,”’ one must learn to stop
analyzing the process after the first decomposition. The rest of the problem
+ will take care of itself, and the details tend only to confuse the issue. When
one cannot see the forest for the trees, it is of very little use to examine the
- branches, twigs, and leaves.
' For beginners, however, this holistic perspective is usually difficult to .
maintain. The temptation'to look at each level of the process is quite strong,
particularly when there4s doubt about the correctness of the algorithm. Over-

coming that temptation requires considerable confidence in the general mech-

anism of recursio?,’and the novice has little basis for that confidence.

