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Series Preface

Mechanical enginecring, an engineering discipline borne of the needs of the
industrial revolution, is once again asked to do its substantial share in the call
for industrial renewal. The general call is urgent as we face profound issues of
productivity and competitiveness that require engineering solutions, among
others. These solutions can only be obtained through engineering education,
which requires new, updated approaches to teaching materials in general and
to textbocks in particular. The Mechanical Engineering Series is a new series,
featuring texts and research monographs, intended to address the need for
information and teaching in contemporary areas of mechanical engineering.

The series is conceived as a comprehensive one which will cover a broad
range of concentrations important to mechanical engineering education and
research. We are fortunate to have a distinguished roster of consulting editors
on the advisory board, each an expert in one of the areas of concentration.
The names of the consulting editors are listed on the first page of the volume.
The areas of concentration are: applied mechanics; biomechanics; computa-
tional mechanics; dynamic systems and control; energetics; mechanics of
materials; processing; thermal science; and tribology.

Professor Marshek, the consulting editor for dynamic systems and control,
and I are pleased to present the fifth volume of the series: Theory of Vibration,
Volume 11: Discrete and Continuous Systems by Professor Shabana.

Frederick F. Ling
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Preface

The theory of vibration of single and two degree of freedom systems is covered
in the first volume of this book. In the treatment presented in Volume I, the
author assumed only a basic knowledge of mathematics and dynamics on the
part of the student. Therefore, Volume I can serve as a textbook for a first
undergraduate semester course on the theory of vibration. The second volume
contains material for a one-semester graduate course which covers the theory
of multi-degree of freedom and continuous systems. An introduction to the
finite-clement method is also presented in this volume. In the first and the
sccond volumes, the author attempted to cover only the basic elements of the
theory of vibration which students should learn before taking more advanced
courses on this subject. Each volume, however, represents a separate entity
and can be used without reference to the other. This gives the instructor the
flexibility of using one of these volumes with other books in a sequence of two
courses on the theory of vibration.

Chapter ! of this vciume covers some of the basic concepts and definitions
used in the analysis i single degree of freedom systems. These concepts and
definitions are also of fundamental importance in the vibration analysis of
multi-degree of freedom and continuous systems. Chapter 1 is of an intro-
ductory nature and can serve to review the materials covered in the first
volume of this book.

In Chapter 2, a brief introduction to Lagrangian dynamics is presented. The
concepts of generalized coordinates, virtual work, and gencralized forces are
first introduced. Using these concepts. Lagrange’s equation of motion is then
derived for multi-degree of freedom systems in terms of scalar energy and work
quantities. The kinetic and strain energy expressions for vibratory systems are
also presented in a matrix form. Hamilton’s principle is discussed in Section
6 of this chapter, while general energy conservation theorems are presented
in Section 7. Chapter 1 is concluded with a discussion on the use of the
principle of virtual work in dynamics.

Matrix methods for the vibration analysis of multi-degree of freedom sys-
tems are presented in Chapter 3 of this volume. The use of both Newton's
sccond law and Lagrange’s equation of motion for deriving the equations of
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motion of multi-degree of freedom systems is demonstrated. Applications
related to angular oscillations and torsional vibrations are provided. The case
of the undamped free vibration is first presented and the orthogonality of the
mode shapes-is discussed. The case of forced vibration of the undamped
multi-degree of freedom systems is discussed in Section 7. The vibration of
viscously damped multi-degree of freedom systems using proportional damp-
ing is examined in Section 8, and the case of general viscous damping is
presented in Section 9. Coordinate reduction methods using the modal trans-
formation are discussed in Section 10. Numerical methods for determining the
mode shapes and natural frequencies are discussed in Sections 11 and 12.

Chapter 4 deals with the vibration of continuous systems. Free and forced
vibrations of continuous systems are discussed. The analysis of longitudinal,
torsional, and transverse vibrations of continuous systems is presented in this
chapter. The orthogonality relationships of the mode shapes are developed
and are used to define the modal mass and stiffness coefficients. The use of
both elementary dynamic equilibrium conditions and Lagrange’s equations
in deriving the equations of motion of continuous systems is demonstrated.
The use of approximation methods as a means of reducing the number of
coordinates of continuous systems to a finite set is also examined in this
chapter.

In Chapter 5 an introduction to the finite-element method is presented. The
assumed displacement field, connectivity between elements, and the formula-
tion of the mass and stiffness matrices using the finite-element method are
discussed. The procedure for assembling the element matrices in order to
obtain the structure equations of motion is outlined. The convergence of the
finite element solution is examined and the use of higher order and spatial
clements in the vibration analysis of structural sysiems is demonstrated.

I would like to thank many of the teachers, colleagues, and students who
contributed, directly or indirectly, to this book. In particular T would like to
thank my students D.C. Chen and W.H. Gau who have made major contribu-
tions to the development of this book. My special thanks to Ms. Denise Burt
for the excellent job in typing the manuscript of this book. The editorial and
production staff of Springer-Verlag deserve special thanks for their coopera-
tion and their thorough professional work. Finally, 1 thank my famuly for the
patience and encouragement during the tine of preparation of this book.

Chicago, Illinois Ahmed A. Shabana
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1

Introduction

The purpose of this chapter is to present a brief introduction to the theory of
vibration of single degree of freedom systems. The method of analysis of single
degree of freedom systems serves as one of the fundamental building blocks
in the theory of vibration of discrete and continuous systems. As will be shown
in later chapters, the concepts introduced and the techniques developed for
the analysis of single degree freedom systems can be generalized to study
discrete systems with multi-degrees of freedom as well as continuous systems.

For this volume to serve as an independent text, several of the important
concepts and techniques discussed in the first volume of this book are briefly
discussed in this chapter. The frce undamped and damped vibraticn of the
single degree of freedom systems is covered in the first three sections of this
chapter. Viscous, structural, and Coulomb damping are discussed and the
significant effect of the damping on the free vibration of the single degree of
freedom systems is demonstrated. Section 4 is devoted to the analysis of the
forced vibrations of single degree of freedom systems subject to harmonic
excitations. The impulse response and the response of the single degree of
freedom system to an arbitrary forcing function are discussed, respectively, in
Sections 5 and 6.

1.1 FREE VIiBRATION

In this section, we study the effect of viscous damping on the free vibration of
single degree of freedom systems. The differential equation of such systems
will be developed, solved, and examined. It will be seen from the theoretical
development and the examples presented in this section that the damping force
has a pronounced effect on the stability of the systems.

Figure 1(a) depicts a single degree of freedom system. The system consists
of a mass »: supported by a spring and a damper. The stiffness coefficient of
the spring s k and the viscous damping coefficient of the damper is c. If the
system is set in motion because of an initial displacement and/or an initial
velocity, the mass will vibrate freely. At an arbitrary position x of the mass
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F1G. 1.1. Damped single degree of freedom system.

from the equilibrium position, the restoring spring force is equal to kx and
the viscous damping force is proportional to the velocity and is equal to ¢x,
where the displacement x is taken as positive downward from the equilibrium
position. Using the free body diagram shown in Fig. 1(b), the differential
equation of motion can be written as

mx = myg — cx - k(x + A) (L.1)

where A is the static deflection at the equilibrium position. Since the damper
does not exert force at the static equilibrium position, the condition for the
static equilibrium can be written as

mg = kA (1.2)
Substituting Eq. 2 into Eq. | yields
mx = —cx — kx
or
mx +cx+kx=0 (1.3)

This is the standard form of the second-order differential equation of motion
that governs the linear vibration of damped single degree of freedom systems.
A solution of this equation is in the form

x = Ae” (1.4)
Substituting this solution into the differential equation yields
(mp* + ¢p + k)yAe” =0
From which the characteristic equation is defined as
mp*+cp+k=0 (L.5)

The roots of this equation are given by

¢ O R
= e A e SR 1.
Py o + o \/ i 4mk (1.6)
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S N —
P = — 5;1 == ""'\/C — 4mk (17)
Define the following dimensionless quantity

= C (1.8)

“c

where ¢ is called the damping factor and C, is called the critical damping

coefficient defined as -
C. = 2mw = 2 /km (19)

where w is the system circular or natural frequency defined as
w = \ﬂ(/';l - (1.10)

The roots p, and p, of the characteristic equation can be expressed in terms
of the damping factor ¢ as

pi=—Co+ w0/ -1 (L.11)
pr= —tw- w/E—1 (1.12)

Clearly, if ¢ is greater than one, the roots p, and p, are real and distinct. If ¢
is equal to one, the root p, is equal to p, and both roots are real. If £ is less
than one, the roots p, and p, are complex conjugates. The damping factor ¢
is greater than one if the damping coefficient ¢ is greater than the critical
damping coefficient C.. This is the case of an overdamped system. The damp-
ing factor & is equal to one when the damping coefficient ¢ is equal to the
critical damping coefficient C,. In this case, the system is said to be critically
dumped. The damping factor £ is less than one if the damping coefficient ¢ is
less than the critical damping coefficient C,. In this case, the system is said to
be underdamped. In the following, the three cases of overdamped, critically
damped, and underdamped systems are discussed in more detail.

Overdamped System In the overdamped case, the roots p, and p, of
Eqs. I'1 and 12 are real. The response of the single degree of freedom system

can be written as

x(t) = A,eP' + A el (1.13)
where 4, and 4, are arbitrary constants. Thus the solution, in this case, is the
sum of two exponential functions and the motion of the system is nor-
oscillatory, as shown in Fig. 2. The velocity can be obtained by differentiating
Eq. 13 with respect to time, that is,

£(1) = p, A, €™ + p, A,eP (1.14)

The maximum displacement occurs at time ¢, when the velocity x(¢) is equal
to zero, that is, the maximum displacement occurs when

Pi A|emlm + p2A2ePz‘m =0
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F1G. 1.2. Overdamped systems.
or
e(Pt"Pz)'m e 112_'4_2
P14
This equation can be used to determine the time ¢, at which the displacement
is maximum as .
1 A
tm=~~——-——ln(—p2 2) (L15)
P1— P2 P14,

The constants A, and 4, can be determined from the initial conditions. For
instance, if x, and %, are, respectively, the initial displacement and velocity,
one has from Egs. 13 and 14

Xp = Al + A2
Xo =p1A; + p,A4,

from which 4, and 4, are

A, =201 "% ' (1.16)
P2 — P

P . .. (1.17)
P2 — 1

provided that {p, — p,) is not equal to zero. The displacement x(t) can then
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FiG. 1.3. 0‘verdamped system with zero initial velocity.

be written in terms of the initial conditions as

1
x(t) = ———[(xop, — Xg)e"' + (Xo — pyXo)e’*] (1.18)
27 P
The time t,, at which the maximum displacement occurs can also be written in
terms of the initial conditions as

_ b In [Pz(f“ - p{xg)] (1.19)
P2 — Py P1(Xo = P2Xo) -
provided that the natural logarithmic function In is defined. That is, ¢, of Eq.
19 is defined only when the argument of the aatural logarithmic function in
this equation is positive. If the system has initial displacement and zero initial

velocity, ¢, 1s given by

tm

i
L ———In1=0

N S
That is, the maximum absolute displacement occurs at time ¢ = 0, as in the
example shown in Fig. 3. It is important, however, to emphasize that there
are also cases in which the response curve does not have an extremum, as
shown in Fig. 4. This case corresponds to the case in which the argument of
the logarithmic function in Eq. 19 is negative.

Example 1.1

The damped mass—spring system shown in Fig. 1 has mass m = 10 kg, stiffness
coefficient k = 1000 N/m, and damping coefficient ¢ = 300 N-s/m. Determine the
displacement of the mass as a function of time.
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FiG. 1.4. Nonoscillatory motion of overdamped systems.

Solution. The natural frequency © of the system is

k 1000
w= [-= [— - =10rad/s
\/m 10

The critical damping coefficient C_ is
C. = 2mm = 2(10)(10) = 200 N-s/m
The damping factor £ is given by

¢ 300
TS s B e = '5
¢ C. 200

Sinc; & > 1, the system is overdamped and the solution is given by
x(t) = A,e"" + A e
where p; and p, can be determined using Egs. 11 and 12 as
pr= —éw+ 08 — 1= —(1.5(10) + (10) /(1.5 — 1
pr= —&w— /& — 1= —(1.5)(10) - (10) /(1.5 — I

—3.8197

1

—26.1803



