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Preface

The theory of limit distributions occupies a central place in probability
and mathematical statistics. It describes limit phenomena of triangular
series or sequences of independent random observations. Typically,
one looks at statistics (functions) constructed from given random
variables. Often these functions are assumed to be linear. Therefore,
this leads to consideration of limit distributions of the sequences

a(é,+ - +¢,) +x,, n=z=1, (0.1.1)

where £,,¢&,,... are independent R-valued random variables and aq,
and x, are real constants. But often when the observations ¢;, &,, ...
are random vectors (R or Banach space valued), the normalization in
(0.1.1) is still done by scalars. In such a setting, we have coordinate-wise
one-dimensional problems again. One should allow the interaction
between coordinate normalization in (0.1.1) to be consistent with the
structure of R? that is, one should allow normalization by arbitrary
linear operators. Thus, the main aims or principles for this book are:

1. Present a theory of limit distributions of sequences
A+ +E) +x,,  nzl, (0.12)

where £, £,,... are R%valued random vectors and Ay Ay,
are matrices (operators) on R“. This explains the title, Operator-
Limit Distributions in Probability Theory.

2. Present proofs which do not appeal to the one-dimensional
results of (0.1.1). In other words, this exposition is much more
“functional” or “coordinate-free.”

ix
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3. Present complete exposition for R? and indicate the essential
differences for infinite-dimensional Banach space valued random
variables.

It seems natural that the normalization of the random vectors be
consistent with the algebraic structure of the space in which they take
their values. Hence, for the real line one uses scalars, for a linear
space one uses linear operators, and for a group one uses group
endomorphisms. (As far as we know, the group case is completely
open. For probabilities on groups, convolution powers are usually
investigated and often the normalized Haar measure is the only limit
measure.)

Limits of (0.1.1) are called stable distributions if £,,¢&,,... are
independent and identically distributed. If £,’s are independent and
the triangular array {a,{;: 1 <j < n} is infinitesimal, then limits of
(0.1.1) are called selfdecomposable distributions (or Lévy class L,
distributions). Stable measures have been extensively investigated for
the last 60 years or so [cf. Gnedenko and Kolmogorov (1954), Zolotarev
(1986), and Linde (1986)]. The class L, of selfdecomposable measures
contains the class of stable laws. It is related to autoregressive se-

quences, that is, a sequence {X,} such that X, , < cX, + ¢,, whose
0 <c¢ <1, X’s are independent of ¢,’s. Furthermore, L, distribu-
tions arise in limits of Ising models for ferromagnetism in statistical
physics [cf. deConinck (1984)]. Elements from L, can be viewed as
limits as ¢ —» o of some stochastic processes which are given by
random integrals and are similar to Ornstein—-Uhlenbeck processes
(cf. Section 3.6). Finally, there is also the notion of self-similar
processes. These processes satisfy {X(at): ¢t > 0} and {a"X(¢): ¢t > 0}
have the same finite-dimensional distributions, where H is a scalar (or
a matrix). In the case when the process has stationary independent
increments, the distribution of X(1) is (operator) stable, and in the
case that the increments are only independent, the distribution of
X(@) is (operator) selfdecomposable [cf. Lamperti (1962, 1972),
Hudson and Mason (1982), and Sato (1991)]. ,

Limit distributions of sequences of the form (0.1.2) will be called
operator-stable and operator-selfdecomposable when £, &,, ... are ii.d.
or only independent and infinitesimally small, respectively. Sakovic
(1961, 1965), Ph.D. dissertation under B. V. Gnedenko, was the first
to investigate operator-stable laws on R? On the other hand, Fisz
(1954) proved a theorem on the convergence of operator-types (nor-
malization by matrices). Both, Fisz and Sakovic used a coordinate-wise
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approach which led to some computational difficulties and which
perhaps explains why this direction was not continued later (cf. the
above aim 2). Independently of Sakovic, Sharpe (1969), Ph.D. disserta-
tion under S. Kakutani, gave a complete characterization of operator-
stable measures on R¢ and his proof used some algebraic methods.
Similarly, Urbanik (1972) gave a “functional” proof for his description
of operator-selfdecomposable measures. This was the beginning of a
period of extensive study of operator-limit distributions. This func-
tional approach also prompted the development of new purely alge-
braic methods (decomposability semigroups) in probability. This book
attempts to summarize that period of investigation.

Chapter 1 is of an auxiliary character. It compiles well-known facts
from the theory of limit distributions (infinitely divisible measures,
weak convergence, Skorohod spaces) without proofs. On the other
hand, algebraic facts (Numakura theorem, Lie groups, one-parameter
semigroups of operators) are given with proofs. Bibliographic com-
ments will always be given at the end of each chapter.

To be able to study the limits of (0.1.1) or (0.1.2), one needs
theorems on the relationship between the limit distribution of the pair
of sequences

{¢,} and {4,¢, +x,). (0.1.3)

We refer to these as convergence of operator types and these are
proved in Chapter 2. Besides that, Chapter 2 contains theorems on
decomposability and symmetry semigroups associated with probability
measures. These semigroups will be the fundamental tools in Chap-
ters 3 and 4, but they are of interest in themselves and therefore are
presented in separate sections. The point is that some topological and
algebraic properties of these semigroups are equivalent to measure
theoretical properties. Examples in Section 2.5 indicate the “trouble”
points when one deals with random variables having values in
infinite-dimensional linear spaces. The last two sections specialize
some results to one-dimensional and infinite-dimensional spaces. Bib-
liographic comments are given in Section 2.8.

Chapter 3 deals with operator-selfdecomposable measures, that is,
limits of (0.1.2) with independent £,’s and infinitesimal triangular
array {A,,gj: 1 <j < n, n > 1}. First, properties of norming sequences
{A,} are discussed, in particular, semigroups of operators generated
by them. Then the main Urbanik decomposability theorem for opera-
tor-selfdecomposable measures, Theorem 3.3.5, is proved. Their
characteristic functions are described in Section 3.4. Section 3.6 estab-



xii PREFACE

lishes random integral representations of operator-selfdecomposable
probabilities, thus showing the connection with Ornstein—Uhlenbeck
type processes. Subsequently, infinitesimal generators for such pro-
cesses are found. Section 3.8 proves absolute continuity of full
exp( —tQ)-decomposable measures on R¢, whereas Section 3.9 deals
with selfdecomposable measures on arbitrary Banach spaces.

In Chapter 4, we investigate operator-stable distributions, that is,
limits of (0.1.2) with i.i.d. sequences &, ,,... . The main character-
ization due to Sharpe (partially due to Sakovic) is proved in Theorem
4.2.12. Structural characterization of operator-stable distributions and
operator exponents of such measures are proved in Section 4.6. Then
commuting exponents and elliptically symmetric measures are dis-
cussed. Section 4.11 gives descriptions of the domain of normal
attraction, that is, normalization is by operators of the form n % for
some operator exponent B. In the case of the generalized domain of
attraction, that is, using arbitrary norming operators A4,, we decided
to omit the results. This general case is presently solved in the
finite-dimensional setting, but it is dealt with by appealing to knowl-
edge of one-dimensional results and applying them uniformly in every
direction [cf. Hahn and Klass (1981, 1985) and Griffin (1986)]. This is
not in the spirit of our aim 2 and therefore is not included here. The
existence of moments of operator-stable laws are presented in Section
4.12, whereas the existence of a complete set of independent univari-
ate marginals is given in Section 4.13. The special case of the usual
multivariate stable laws is presented in Section 4.14. Chapter 4 closes
by considering some special cases and with bibliographic comments.

The book ends with an epilogue in which we briefly discuss some
arcas of operator-limit distributions theory which are omitted, in
particular, operator-semistability, stability for a group - of bounded
linear operators, and normalization by a one-parameter semigroup of
operators.

This book is designed to be used by graduate students as a textbook
either in a classroom or for directed studies. For that purpose, we
added Chapter 1. Definitely, we do not suggest one starts with
Chapter 1 since it is for reference purposes only and it should be
consulted as needed. Because of aim 2, it is not necessary that readers
be familiar with classical stability or decomposability (on R! or a
Banach space). As a by-product, those are discussed at the end of
each chapter. We do not have sections with exercises, but many of the
corollaries and lemmas can be assigned as homework. Because of aim
3, students can persue their own research in the area of operator-limit
distributions on infinite-dimensional linear spaces and on topological
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groups. Those interested only in operator-stability can skip Chapter 3
since it is quite independent of Chapter 4.

We also see this book as the main reference for further research. It
is the first monograph covering such a selection of limit laws. In some
sense it can be viewed as a complement to the books by Araujé and
Giné (1980), Linde (1986), and Zolotarev (1986).

It took a long time to complete this book due in large part to the
“long-distance” communication between Poland and the United
States. Thus, we divided the work and the responsibility. Of course,
we share the responsibility for any errors and oversights. Much of the
results are due to others and we point this out in the bibliographic
comments at the end of each chapter.

We benefited from discussions with many of those working in the
areas of operator-limit theorems. We thank them all for their encour-
aging, discouraging, or neutral comments. Those whom we particularly
thank include (in alphabetical order): M. G. Hahn (Tufts University),
W. Hazod (University of Dortmund), W. N. Hudson (Auburn Univer-
sity), R. Jajte (University of £.6dz), M. Klass (University of California,
Berkeley), W. Krakowiak, J. Kucharczak, B. Mincer, and T. Rajba (all
from University of Wroctaw), K. Sato (University of Nagoya), H.
Tucker (University of California, Irvine), K. Urbanik (University of
Wroctaw), J. A. Veeh (Auburn University), and M. Yamazato (Nagoya
Institute of Technology).

Last, but not least, we would like to thank our closest loved ones
who have suffered through these years. Their constant reminding
question: “When will you be ready?” was always motivating and
encouraging on a road up to this line.

ZBIGNIEW J. JUREK
J. DAvib MAsoN
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CHAPTER 1

Preliminaries

The purpose of this introductory chapter is to collect all the needed
facts for future references. The theorems and tools from outside of
probability theory are presented with complete proofs and are in the
generality that covers our needs. However, facts from probability
theory, mainly concerned with weak limit theorems, are presented
mostly without proofs. References for them are given in the last
section of this chapter.

1.1 NUMAKURA THEOREM

Let § be a Hausdorff topological space. If in S there is defined a
single-valued product ab which is associative and continuous, then S
is called a topological semigroup. By a subsemigroup of S we mean a
nonempty subset A such that 42 < A, that is, ab € A for all a,beA.
Also, A is called a subgroup of S if xA = Ax = A forall x € 4. By a
left (right) ideal of S we mean a subset M such that SM c M
(MS c M). When M is both a left and a right ideal of S, M is called
an ideal of S. Finally, an element a € § is called an idempotent of S
provided a* = a. Obviously, the zero(a -0 =0-a=0foralla € § )
and the identity (e a =a -e =a for all a € §) elements of S are
idempotent, whenever they exist.

Theorem 1.1.1. If S is a compact semigroup, then S contains a
compact subgroup, and hence at least one idempotent.

Proof. Fix a € § and let K(a) denote the set of all limit points of
the sequence {a"}, , |, that is,

K(a) = N {a:i=n},

n=1
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where A~ denotes the closure of 4 C S. We assert that K(a) is a
compact, commutative subsemigroup of S. The commutativity of K(a)
is given by: let b, := lim,,_,, @™, b, = lim,, _,, a*» with {m,} and {k,}
strictly increasing. By continuity of products, b,b, = lim,_,_ a™** =
b,b,. The subsemigroup property follows from a similar argument and
the compactness is obvious.

To complete the proof, we show that xK(a) = K(a) for all x €
K(a). Clearly, we have xK(a) c K(a). Suppose there is an x € K(a)
for which xK(a) is a proper subset of K(a). Then there is a z € K(a)
such that z & xK(a). By continuity of products, there are open neigh-
borhoods V, W, and U of x, K(a), and z, respectively, such that
VW N U-=@. Since x,z € K(a), there are an integer m and a
sequence of integers {n.;};,, such that n,, , >n,>m, a” €V, and
a®e€ U for all i > 1. Let b be a limit point of {a"~™},,,. Then
b € K(a) Cc W, so there is an integer j such that a™~ ™ e W for all
i>j. Hence, a” =a™a" " € VW for i >j. But, a” U, which
contradicts VW N U = . Thus, xK(a) = K(a)x = K(a), so K(a) is a
subgroup of S. Obviously, the identify of K(a) is an idempotent of S.

Q.E.D.

For A c S, let sem A4 denote the smallest closed subsemigroup in S
containing A. In case A = {a}, sem{a} is called a monothetic semi-
group.

Theorem 1.1.2. If the monothetic semigroup sem{a} is compact,
then the set of all limit points of {a"}, ., K(a), is the minimal ideal in
sem{a} and the unit element, e, of the subgroup K(a) is the only
idempotent in sem{a}.

Proof. Since sem{a} = {a": n > 1} U K(a) and K(a) is a commuta-
tive subgroup of sem{a}, we see that K(a) is an ideal in sem{a}. Let b
be an idempotent in sem{a}. When b € K(a), b = e since K(a) is a
group. When b € {a": n > 1}, then b = a™ for some m, so for every
k > 1, b = b* = g*™, which implies b € K(a). This shows that the
identity of K(a) is the only idempotent of sem{a}.

It remains to show K(4) is a minimal ideal. First, note that if H is a
minimal ideal in semf{a), then xH = Hx = H for all x € sem{a},
because otherwise xH or Hx is a proper subideal of H in semf{a}.
Hence, H is a subgroup with unit element e € K(a), since sem{a} has
only one idempotent. Second, note that H = G(e), where H is a
minimal ideal in sem{a} and G(e) is a maximal subgroup of sem{a}
containing e. We know that G(e) exists by the Zorn lemma. To see
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this, we obviously have H c G(e). Let z € G(e). Then zH = H, so
there is z* € H such that zz* = z*z = e. Hence, z € H, so G(¢) C H.
Third, we show that K(a) = G(e). Since K(a) is a subgroup with
identity e, we have K(a) c G(e). Suppose there is b € G(e) and
b & K(a). Since b € sem{a}, b = a™ for some integer m. Since a™e =
a™ and product is continuous, for every neighborhood W of b, there is
a neighborhood V of e such that bV Cc W. Since e € K(a), V 2 {a”™:
k > 1} for some sequence n, < n,_,. Hence, a™a™ = a™*™ € W, so
b must be in K(a). This contradiction shows that K(a) = G(e). These
three steps show that K(a) is the minimal ideal in sem{a}. Q.E.D.

Corollary 1.1.3 (Numakura Theorem). Let S be a compact semi-
group. For each a € S, the monothetic semigroup sem{a} is compact
and the set of limit points of {a"},,,, K(a), is a subgroup. Moreover,
K(a) is the minimal ideal of sem(a} [hence, for x in sem{a}, xK(a) =
K(a)) and the identity element, e, of the group K(a) is the only
idempotent in sem{a}.

For future reference, we have the following corollary.

Corollary 1.1.4. If the monothetic semigroup sem{a} is compact,
then there is b € K(a) such that ab = ba = e.

Proof. Since K(a) is commutative and aK(a) = K(a), such b €
K(a) exists. ‘ Q.E.D.

1.2 LINEAR SPACES

Let X be a real Banach space, that is, X is a real linear, normed,
complete space, with norm || - |l. By X* we denote its topological dual
Banach space, that is, x* € X* are continuous linear functionals on
X, and ( -, - ) is the dual pair between X* and X. When the norm in
X is given by a scalar product, X is called a Hilbert space. In that
case, X* is isomorphic to X and the dual pair is simply the scalar
product. Furthermore, all real separable Hilbert spaces are isomor-
phic to /,, the space of all real square-summable sequences with

(xy) = Txye  lxll= (Cx, x))2
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for x = {x;};,, and y = {y;};. Besides this example, we will deal
with the following ones.

(a) X = Cy(R?) is the set of all real-valued continuous functions on
R, d-dimensional Euclidean space, which vanish at infinity.
The point «© can be used in the one-point compactification of
R“. By the Riesz representation theorem, each x* € [Cy(RYJ* is
uniquely determined by a finite Borel measure m on RY, not
necessarily positive, such that, for f € Cy(R9),

%, f) = [f(x)m(dx),  lxtll = m(R).

(b) X = R% Then (R%)* = R4 and
d
(x,y) = Ex,.yi.
i=1

Also, it is easy to see that in all finite-dimensional inner
product spaces all norms are equivalent, that is, if || -||; and
I - Il are two norms on X, then there are positive constants c,
and c, such that for all x € X, c,lIxll; < llxll, < ¢, llxll;.

Let X and Y be Banach spaces. By a bounded linear operator A
from X into Y, we mean a function 4: X —» Y such that (1) 4 is
linear, that is, A(a,;x; + a,x,) = a;Ax, + a, Ax, for all x,,x, € X
and all a,, @, € R, and (2) there is a constant C such that || Ax| <
Clix]| for all x € X; the first norm is in Y and the second norm,
possibly different, is in X. The infimum of all C in (2) is denoted by
| 4ll, and is called the norm of the operator A. The assumption that A
is bounded and linear is equivalent to 4 being continuous and linear
from X to Y, where the topologies are given by the norms. The
collection L(X,Y) of all bounded linear operators from X into Y,
using the operator norm, is also a Banach space. When X =Y,
L(X,Y) is denoted by End(X); in which case, we also have that the
product of two operators in End(X) is a continuous linear operator: if
A,B € End(X), then AB: X — X is given by (AB)x = A(Bx) for
x € X. Moreover, || AB]| < ||A|l||B|| for all A, B € End(X). With this
multiplication of operators, End( X') becomes a topological semigroup.
By Aut(X), we denote the set of all invertible operators in End(X).
These inverses are also continuous and linear, so Aut( X) is a topologi-
cal group.
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Let 2(A) be a linear subspace of a Banach space X, and let A be
a linear operator from 2(A4) into a Banach space Y. By the graph of
A is meant the set

graph A == {(x, Ax): x € 9(A)} c X X Y.

The product space X X Y can be treated as a Banach space; for
example, ||(x, y)ll = lIx|l; + lyll2, where || - [l; and || - ||> are the norms
in X and Y, respectively. We say that the operator A4 is closed if its
graph is a closed subset of X X Y, that is, if x, € 2(A), x, = x, in
X, Ax, =y, in Y implies that x, € Z(A) and y, = Ax,. An opera-
tor B defined on Z(B) c X is called an extension of A with its
domain 2(A) whenever 2(A) € 2(B) and Ax = Bx for all x €
2(A).

The following is a criterion which determines when an operator A4
with domain 2(A) has a closed extension.

Theorem 1.2.1. Let A be a linear operator with domain 9(A) C X.
Then A has a closed extension if and only if there is noy + 0 such that
(0, y) belongs to (graph A)~, the closure of graph A. In this case,
(graph A)~ is the graph A~, the smallest closed extension of A.

Proof. Since graph A is a linear subspace of X XY, so is
(graph A)~. Since (x, y,),(x,y,) € (graph 4)~ implies that y, =y,
[(x, y) — (x, y,) = (0, y, — y,) € (graph 4)~], the relation
(graph A)"C X X Y determines a function, A~. We see that the
linearity and closeness of (graph 4)~ implies that 4~ is linear and
closed. Obviously, graph A~ = (graph 4)~. It is also obvious that
(graph A)~ is the graph of the smallest closed extension of 4. The
converse is trivial. Q.E.D.

We use 4~ to denote the smallest closed extension of the linear
operator A.

Corollary 1.2.2. If a linear operator A has an extension which is a
closed linear operator B, then A~ exists.

Proof. Since (graph A)~C graph B, there is no y # 0 such that
(0, y) € (graph 4)~. Now, apply Theorem 1.2.1. Q.E.D.
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Obviously, all bounded linear operators are closed. Other examples
of closed operators are the infinitesimal generators of one-parameter
semigroups [cf. Proposition 4.4.1(c)]. Also, note that the sum of a
closed linear operator and a bounded linear operator is closed.

Now, we wish to define the trace of a linear operator on R?. When
A is a d X d matrix, we define trace(4) to be the sum of the numbers
on its main diagonal. Since similar matrices have the same trace, we
may define the trace(A) for 4 a linear operator on R to be the trace
of any matrix which represents 4 in an ordered basis.

For A € End(R?), we may define e? by the series e :=

- _oln) 4" Since T2_o(n) Y All" converges, e/ € End(R?). Ac-
tually, e4 € Aut(R?) since the inverse of e is given by e .

It is well known how the determinant of a d X d matrix A4 is
defined. For 4 € End(R9), det(4) denotes the determinant of any
matrix which represents A4 in a basis. Then det(e?) = e,

The final topic of this section is the primary decomposition theorem
of R?. Let A € End(R?). The minimal polynomial for A is the unique
polynomial g(-) over the reals with the properties that (1) the coeffi-
cient of its highest term is one, (2) g(A4) = 0, and (3) if h(A) = 0,
where h(-) is a polynomial over the reals, then the degree of A(-) is
greater than or equal to the degree of g(:). A polynomial over the
reals is said to be irreducible if it is not possible to factor it into the
product of two polynomials, each having degree greater than or equal
to one. Let ker(A) denote the set {x € R? Ax = 0}, and call it the
null space of A. A subspace W C R? is said to be A-invariant if
A(W) c W. We write R = W, ® --- ® W, if each W, is a subspace
of R and each v € R? has a unique representation of the form
v=uv; + - +v, with v, € W, for all i. We also say that R? is the
direct sum of the subspaces W,,..., W,. A nonzero polynomial a,x"
+a,_x""' + -+ is called a monic polynomial if a, = 1.

Theorem 1.2.3 (Primary Decomposition Theorem). Let A €
End(R?), and let g(-) be its minimal polynomial. Assume g = g -
gx*, where the g, are distinct irreducible monic polynomials over R and
the r; are positive integers. Let W, := ker(g(A)") for 1 <i < k. Then

D RI=W, @ - oW,;
(ii) each W, is A-invariant;
(iii) if A, is the restriction of A to W,, then the minimal polynomial of
A;is gl



