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Preface

During the last decade the methods of algebraic topology have invaded
extensively the domain of pure algebra, and initiated a number of internal
revolutions. The purpose of this book is to present a unified account of
these developments and to lay the foundations of a full-fledged theory.

The invasion of algebra has occurred on three fronts through the
construction of cohomology theories for groups, Lic algebras, and
associative algebras. The three subjects have been given independent
but parallel developments. We present herein a single cohomology (and
also a homology) theory which embodies all three; each is obtained
from it by a suitable specialization.

This' unification possesses all the usual advantages. One proof
replaces three. In addition an interplay takes place among the three
specializations; each enriches the other two. -

The unified theory also enjoys a broader sweep. It upphu to situa-
tions not covered by the specializations. An important example is
Hilbert’s theorem concerning chains of :yzyg:es in a polynomial ring of
n variables. We obtain his resuit (and various analogous new theorems)
as a theorem of homology theory :

The initial impetus which, in part, led us to these investigations was
provided by a problem of topology. Nearly thirty years ago, Kiinneth
studied the relations of the homology groups of a product space to those
of the two factors. He obtained results in the form of numerical relations
among the Betti numbers and torsion coeflicients. The problem was to
strengthen these results by stating them in a group-invariant form. The
first step is to convert this problem into.a purely algebraic one concerning
the homology groups of the tensor product of two (algebraic) complexes. .
The solution we shall give involves not only the tensor product of the
homology groups of the two complexes, but also a second product called
their torsion product. The torsion product is a new operation derived
from the tensor product. The point of departure was the discovery that
the process of deriving the torsion product from the tensor product
could be generalized so as to apply to a wide class of functors. In par-
ticular, the process could be iterated and thus a sequence of functors
could be obtained from a single functor. It was then observed that the
resulting sequence possessed the formal properties usually encountered
in homology theory.
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In greater detail, let A be a ring, 4 a A-module with operators on the
right (i.c. a right A-module) and C a left A-module. A basic operation
is the formation of the tensor product 4 ®, C. This is the group
generated by pairs a ® ¢ with the relations consisting of the two dis-
tributive laws and the condition a1 ® c=a ® Ac. It is important to
consider the behavior of this construction in relation to the usual concepts
of algebra: homomorphisms, submodules, guotient modules, etc.

To facilitate the discussion of this behavior we adopt diagrammatic
methods. A sequence of A-modules and A-homomorphisms

Ap > Ay~ A, m+l1<n

is said to be exact if, for each consecutive two homomorphisms, the
image of the first is the kernel of the following one. In particular we
shall consider exact sequences

1) 0>A'">A>A"—0.

In such an exact sequence 4’ may be regarded as a submodule of A with
A" as the quotient module.

If an exact sequence of right A-modules is tensored with a fixed left
A-module C, the resulting sequence of groups and homomorphisms is,
in general, no longer exact. However, some measure of exactness is
preserved. In particular, if the sequence (f)'is tensored with C, the
following portion is always exact:

(z) A' ®AC—‘>A @AC—)A' ®AC—>0.

We describe this property by saying that the tensor product is a right
exact functor.

The kernel K of the homomorphism on the left in the sequence (2)
is in general not zero. In case A is a free module, it can be shown that
{up to natural isomorphisms) K depends only on A" and C. We define
the torsion product Tord (A",C) to be the kernel in this case. In the
general case there is a natural homomorphism

Tord (4",C) > A’ ®, C

with image K. Continuing in this way we obtain an infinite exact
sequence
(®) ---—Tord,, (4°,C) > Torh {4’,C)

—Tor? (4,0) — Tor (4°,.C) — - - -

g
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which terminates on the right with the sequence (2) above, provided that
we sct '

@) Tord (4,0) = A ®, C.

The homomorphisms in (3) which pass from index n4- 1 to n are
called connecting homomorphisms.

The condition that 4 be free in the definition of Tor (4",C) is un-
necessarily ‘restrictive. It suffices that 4 be projective, i.e. that every
homomorphism of A into a quotient B/B’ admit a factorization
A—~> B B/B'.

The inductive definition of the sequence (3) as described above is
oumbersome, and does not exhibit clearly the connection with homology
theory. This is remedied by a direct construction as follows. If 4 is a
module, then an exact sequence

> A, > A, > > Ay > Ay > A0

is called a prajective resolution of A if each A,, i=0,1,2, ... is projective.
Tensoring with C gives a sequence

) > Ay @y C > > Ay ®, C

which may not be exact but which is a complex (the composition of two
consecutive homomorphisms is zero). The n-th homology group of the
complex (5) is precisely Tor? (4,C). Using the second definition of Tor, -
the sequence (3) is constructed in the usual manner as the homology
sequence of an exact sequence of complexes

0> X' @C>XR,C>X"®,C~>0

where X', X, X" are appropriate projective resolutions of A’, 4, A”.
A basic property of Tor is :

6) Tor2 (4,C) = 0if n > 0 and A is projective.

In fact, this property, the exactness of (3), property (4) and the usual formal
properties of functors suffice as an axiomatic description of the functors
Tor. - :

The" description of Tor2 (4,C) given above favored the variable A
and treated C as a constant. If the reversed procedure is adopted, the
same functors Tor? (4,C) are obtained. This “symmetry” of the two
variables in 4 ®, C is emphasized by adopting a definition of Tor
which uses simultaneously projective resolutions of both. 4 and C. This
symmetry should not be confused with the symmetry resulting from the
natural isomorphism 4 ® , C =~ C ®, 4 which is valid only when A
is commutative.
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Another functor of at least as great importance as the tensor product
is given by the group Hom, (4,C) of all A-homomorphisms of the left
A-module 4 into the left A-module C. This functor is contravariant in
the variable 4, covariant in the variable C and is /efr exact in that when
applied to an exact sequence (1), it yields an exact sequence
2) 0 — Hom,, (4°,C) - Hom, (4,C) — Hom, (4’,C).

A similar discussion to that above leads to an exact sequence
@3) --:—>Ext} (4",C) — Ext} (4,0)
— Ext} (4',C) - Ext}*! (4",C) > - - -

which is a continuation of (2°), provided that we set

“) Ext} (4,C) = Hom, (4,C).
These properties together with the property
6" Ext* (4,C) = 0 if n > Q and A is projective

and the usual formal properties of functors suffice as an axiomatic descrip-
tion of the functors Ext% (4,C).

The description above favored A as a variable while keeping C constant.
Again symmetry prevails, and identical results are obtained by treating
A as a constant and varying C. In this case however, instead of projective
modules and projective resolutions, we employ the dual notions of
injective modules and injective resolutions. A module C is injective if
every homomorphism B’ — C admits an extension B — C for each module
B containing B’ as a submodule. An injective resolution of C is an
exact sequence ’

05C>C">Cls...5C*>C ...
with C* injective for i = 0,1,2,....

With the functors Tor and Ext introduced we can now show how
the cohomology theories of groups, Lie algebras and associative algebras
fit into a uniform pattern.

Let IT be a multiplicative group and C an (additive) abelian group
with IT as a group of left operators. The integral group ring Z(IT)
is defined and C may be regarded as a left Z(IT)}-module. The group
Z of rational integers also may be regarded as a Z(IT)-module with
each element of II acting as the identity on Z. The cokomology groups-of
IT with coefficients in C are then

H*(I1,C) = Extg g, (Z,C).
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These cohomology groups were first introduced by Eilenberg-MacLane
(Proc. Nat. Acad. Sci. U.S.A. 29 (1943), 155-158) in connection with a
topological application. Subsequently they found a number of topo-
logical and algebraic applications; some of these will be considered in
Ch. xiv and xvi. Quite recently, the theory for finite groups has been
greatly enriched by the efforts of Artin and Tate; Ch. xu deals with
these new developments. This theory has had its most striking appli-
cation in the subject of Galois theory and class field theory. As this is
8 large and quite separate topic we shall not attempt an exposition here,
although we do prove nearly all the results of the cohomology theory of
groups needed for this application.

Let g be a Lie algebra over a commutative ring X and let C be a (left)
representation space for g. The enveloping (associative) algebra g* is
then defined and C is regarded as a left g*-module. The ground ring K
with the trivial representation of g also is a left g*-module. The cohomo-
logy groups of g with coefficients in C are then

H*(g,C) = Extl. (K,C).

This theory, implicit in the work of Elie Cartan, was first explicitly
formulated by Chevalley-Eilenberg (Trans. Am. Math. Soc. 63 (1948),
85-124). We shall give an account of this theory in Ch. xu1; however
we do not enter into its main applications to semi-simple Lie algebras
and compact Lie groups.

Let A be an associative algebra (with a unit element) over a com-
mutative ring K, and let 4 be a two-sided A-module. We define the
enveloping algebra A° = A ® x A* where A* is the “opposite™ algebra
of A. A may now be regarded as a left A*-module. The algebra A
itself also is a two-sided A-module and thus a left A*-module. The
cohomology groups are

HY(A,A) = Ext§, (A, A).

This theory, closely patterned after the cohomology theory of groups, was
initiated by Hochschild (4nn. of Marh. 46 (1945), 58-67). A fairly
complete account of existing results is given in Ch. 1x.

In all three cases above, homology groups also are defined using the
functors Tor. '

So far we have mentioned only.the functors 4 ® , C and Hom, (4,C)
and their derived functors Tor and Ext. It has been found useful to
consider other functors besides these two; Ch. ni-v develop such a theory
for arbitrary additive functors. Both procedures that led to the definition
of Tor are considered. The slow but elementary iterative procedure
leads to the notion of satellite fimctors (Ch. m). The faster, homological
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method using resolutions leads to the derived functors (Ch. v). In most
important cases (including the functors ® and Hom) both procedures
yield identical results.

Beginning with Ch. vi we abandon general functors and confine our
attention to the special functors Tor and Ext and their composites.
The main developments concerning homology theory are grouped in
‘Ch. vi-xu. .

The last three chapters (xv-xvu) are devoted to the method of spectral
sequences, which has been a major tool in recent developments in algebraic
topology. In Ch. xv we give the general theory of spectral sequences,
while the subsequent two chapters give applications to questions studied
carlier in the book.

. There is an appendix by David A. Buchsbaum outlining a more
abstract method of treating the subject of satellites and derived functors.

Each chapter is preceded by a short introduction and is followed by a
list of exercises of varied difficulty. There is no general bibliography;
references are made in the text, whenever needed. Crossreferences
are made as follows: Theorem 2.1 (or Proposition 2.1 or Lemma 2.1) of
Chapter x is referred to as 2.1 if the reference is in Chapter x,-and as
x,2.1 if the reference is outside of that chapter. Similarly vi,3,(8)
refers to formula (8) of § 3 of Chapter vin.

We owe expressions of gratitude to the John Simon Guggenheim
Memorial Foundation who made this work possible by a fellowship
grant to one of the authors. We received help from several colleagues:
D. A. Buchsbaum and R. L. Taylor read the manuscript carefully and
contributed many useful suggestions; G. P. Hochschild and J. Tate
helped with Chapter xu1; J. P. Serre and N. E. Steenrod offered valuable
criticism and suggestions. Special thanks are due to Miss Alice Krikorian
for her patience shown in typing the manuscript.

H. CARTAN
University of Paris S. EILENBERG
Columbia University
September, 1953
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CHAPTER 1
Rings and Modules

Introduction. After some preliminaries concerning rings, modules,
homomorphisms, direct sums, direct products, and exact sequences, the
notions of projective and injective modules are introduced. These
notions are fundamental for this book. The basic results here are that
each module may be represented as a quotient of a projective module and
also as a submodule of an injective one.

In §4-7 we consider special classes of rings, namely: semi-simple
rings, hereditary rings, semi-hereditary rings, and Noetherian rings. . It
will be seen later (Ch. vii) that for integral domains the hereditary (semi-
hereditary) rings are precisely the Dedekind (Priifer) rings.

1. PRELIMINARIES

Let A be a ring with a unit element 1 # 0. We shall consider (left)
modules over A, i.e. abelian groups A with an operation da ¢ 4, for
A€ A, a e Asuch that

Ma, + ay) = Aa, + 2a,, (A4 + Ap)a = Aa + Aa,
(M) (@) = A(4;0), la=a.
We shall denote by 0 the module containing the zero element alone.
In the special case A = Z is the ring of rational integers, the modules
"over Z are simply abelian groups. If A is a (commutative) field, they
are the vector spaces over A.

Given two modules 4 and B (over the same ring A), a homomorphism
(or linear transformation, or mapping) of 4 into B is a function f defined
on A with values in B, such that f(x + y) = fx + fy; f(Ax) = A(fx);
x,yeA, Ae A. We then write f: A — B, or A — B if there is no ambi-
guity as to the definition of f. The kernel of f is the submodule of 4
consisting of all x € 4 such that fx = 0; it will be denoted by Ker (f) or
Ker (4 — B). The image of f is the submodule of B consisting of all
elements of the form fx, x € 4; it will be denoted by Im () or Im (4 — B).

We also define the coimage and cokernel of f as follows:

Coim (f) = A/Ker (f),

Coker (/) = B/Im (f).
3
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Of course, f induces an isomotphism Coim (f) & Im (/) and because of
this isomorphism the coimage is very seldom employed.

A homomorphism f: A — B as is called a monomorphism if Ker f== 0;
f is called an epimorphism if Coker f=0 or equivalently if In f= B.
If f is both an epimorphism and a monomorphism then £ is an isomorphism
(notation: f: 4 as B).

Let A be a module and {4,} a (finite or infinite) family of modules
(all over the same ring A) with homomorphisms

(™ »
A A— A,

such that pi, = identity, pyl, = 0 if § # «. We shall say that {i,,p}
is a direct family of homomorphisms.

If we assume that each x ¢ A can be written as a finite sum x = i x,,
x, € A, it follows readily that A is isomorphic with the direct sum 3 4,.
We therefore say that the family {i,,p,} yields a representation of A as
a direct sum of the modules A,. In this case the mappings {p,} can be
defined using the {i,} alone.

If we assume that for each family {x.}, x, € A,, there is a unique
x € A with p.x = x,, it follows readily that 4 is isomorphic with the
direct product T| 4,. We therefore say that the family {/,.p.} yields a
representation of A as a direct product of the modules 4,. In this case
the homomorphisms {i,} can be defined using the {p,} alone.

If the family {4,} is finite, the notions of direct sum and direct product
coincide. A finite direct family yiclds a direct sum (or direct product)
representation if and only if 31, p, = identity.

A sequence of homomorphisms

Ap>Apy—- >4, m4+1i<n
is said to be exact if for each m < g <n we have Im (4, , + 4,)
= Ker (4, > Ayyy). Thus 4 —» B is a monomorphism if and only if -
0— A > B is exact and an epimorphism if and only if 4 +~ B0 is
exact. We shall also allow sequences which extend to infinity to the left

or to the right or in both directions.
In particular, we shall consider exact sequences

*) 0+A'-+A—>A"-0,

Since A" - A is a monomorphism we may regard 4’ as a submodule of A.
Since A — A" is an epimorphism with 4’ as kernel, we may regard A’
as the quotient module 4/4’. Thus (*) may be replaced by

O—>A'>A>AA' 50,



