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| Preface

In the summer of 1970, one of us (J. N. M.) had the opportunity of
presentiig a ‘course of lectures ‘on semi-empirical SCF-MO theory at the
University of Nebraska, and at San Diego State College. In preparing
these lectures we were particularly struck by the difference in philosophy
between some of the principal workers in the field, and by the wide
variation in the methods used to choose the parameters that enter these
theories. Moreover the theories have changed rapidly over the last few
years, and it must be confusing for the nor-specialist to sort his way
through the maze of initials ranging from cNDO/1 to MINDO/2. We hope
in this book to play the role of pathfinders in this respect.

In writing the book we have in mind, primarily, the experimentalist
who is interested in using theoretical methods to predict the results of
possible experiments and to analyse his resulfs. At the present time com-
puter programs are readily available for many of the theories which we
shall describe and the main problem that the experimentalist faces is
which theory is the best for his particular data and how. reliable is that
theory. Although we have tried to answer these questions, we have not
written a book for the complete novice in theoretical chemistry. We
would not wish to encourage such a person to use the theories we describe
without some knowledge of simple Mo theories like Hiickel theory. On the
other hand we hope to show that scF theories are not so complicated that
they can only be understood and used by the professional theoretician.

Although Hiickel theory has.had many successes in theoretical organic
chemistry we believe that it has now largely outlived its usefulness. The
SCF theories which have replaced it are based on firmer theoretical
foundations and they are more reliable for the prediction and under-
standing of quantitative data. We therefore begin the book by emphasizing -
some of the failures of Hiickel theory. -

In chapter 2 we describe the scF theories of # electrons which were
developed after 1953. The mathematical developments introduced in this

v



Vi PREFACE

chapter are sufficient to carry the reader through the more recent all-
valence-electron theories which ate déscribed in chapter 3. These two
chapters -cover the properties of molecules both in their ground states
and in excited electronic states. There has been some difficulty in getting
parameters to fit both types of data, which is the reason that most books
deal with one or the other. We shall however show that in the more
recent theories parameters can be found which are adequate for both.

Chapters 4 and 5 give apphcatlons of the theories in the fields of chemical
structure and reactivity and in magnetic resonance spectroscopy. These
chapters contain some of the subsidiary theory needed to analyse the
-experimental data. For example, we discuss the theory of the BSR hyperfine
constant before describing its interpretation in terms of electronic wave
functions. We complete the book with a brief discussion of possible
future developments and include two mathematical appendices.

The book lists over 350 references and these have been chosen from a
fairly thorough literature search up to the middle of 1970. There is a much
wider coverage for the all-valence-electron theories than for the early
m-electron SCF theories as we feel that the latter are more widely available
in earlier texts.

J. N. M.
A.J. H.
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- Symbols and abbreviations

Fundamental constants

e electronic charge 4.803 x 107 e.s.u.

m electronic mass .9.109 x 10-%8 g

c velocity of light 2.998 x 10" cm sec™?

i = h2n Planck’s constant 1.054 x 10-% erg sec

k Boltzmann’s constant ~ 1.381 x 10-¢ erg degree™
a, Bohr radius 0.5292A

Operators

o  The complete electronic Hamiltonian, or a general Hamiltonian |

H a one-clectron Hamiltonian not ngorously defined

H° the core Hamiltonian (the terms in ¥ which are functions of the
coordinates of one electron)

F the self-consistent-field operator
3,7, 3,3 J, L, S’I I#, etc. arigular momentum operators
 —
V: = P + = ay’ del squared which occurs in the kinetic energy
operator
Wave functions
@ an atomic orbital
v a molecular orbital
v a complete wave function

o, B spin wave functions



X SYMBOLS AND ABBREVIATIONS

Integrals

Jroedo integration over space coordinates

Jooedr ' ~ integration over space and spin coordinates
H,, = [¥HY,dr a matrix element of ¢ o

S, = J¥Y¥,dr the overlap integral

(| po) = [f PuUDPANEIrDP,@76(2) vy dv,

Yur = (2] ' '

Other symbols ' AR

A electron affinity- - .

c an expansion coefficient
Fr,G*  Slater-Condon parameters
magnetic field

ionization potential

rate constant

equilibrium constant
bond order

nuclear charge

Kronecker delta (= 0,r # s; = 1,7r =)
Slater orbital exponent
polarizability factor '
charge density
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Energy conversion table

!“

-erg molecule™?:  keal mole™? eV _ a.u
erg/molecule | 1 1439 x 1018 6242 x 1011 2294 x 101
- kcal/mole 6947 x 10714 1 4:336 x 1072 1594 x 1073
eV 1-602 x 10712 23-06 1 3-675 x 1072

a.u. (Hartree) | 4-359 x 1071 6275 27-21 N
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“ Chapter 1

‘T‘he' limitations of Hiickel theory
.and the development of the ..
self-consistent-field (scr) method

Most chemists are familiar with the Hiickel molecular orbital theory of =
electrons, and many have followed the recent extensions. of the theory to
o electrons. This theory has been very successful in explaining many
properties of organic molecules, and has to a large extent superseded the
more traditional resonance theory in the language. of the experimental
chemist. The stimulus of the work of Coulson, Dewar and Longuet-
Higgins, and later of Hoffmann and Woodward, has shown that:molecular
orbital theory in. its simplest form leads to quantitative predictions. of
molecular properties after only a trivial mathematical analysis.

The successes of this simple theory cover the field of molecular geom-
etries, ground-state energies, reactivity and spectroscopic properties.
There is no shortage of good books on the subject and we list a few
of them in the bibliography.!~* Our objective in this chapter is to
emphasize the points at which Hiickel theory fails as a justification for the
development of more comprehensive theories.

The history of calculations on small molecules like H, suggests that
there is no simple way of obtaining exact solutions of the Schrddinger
equation for many-electron atoms and molecules. By exact we mean that
the calculated rotal energies have an accuracy comparable with those which
can be generally obtained from experiment. Energy differences, deduced
by spectroscopic methods, may of course cover a very wide range, de-
pending on the type of spectroscopy used, and ‘exact’ solutions may show
up badly when tested by the criteria of low-frequency spectroscopy.

‘Exact’ solutions of the electronic Hamiltonian—that is the Hamil-
tonian based on the Born-Oppenheimer approximation of stationary
nuclei—have been obtained for simple moleculeg¢* like H,, 'LiH and H,
and one can expect exact solutions for molecules like H,O within a few

1
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years. However, chemists are generally interested in far larger molecules
than these, for which such exact solutions are not possible within the
foreseeable future.

Between the extremes of Hiickel theory and exact calculations there are
many-methods of calculating approximate wave functions. Most of these
fall within the model called the self-consistent-field molecular-orbital
- (ScF-MO) method. In this oné usés the concept of a molecular orbital, as
being the wavefunction of one electron moving in the potential of the
nuclei and the average effective potential of the other electrons. Within
this model there are various levels of approximation. At the one extreme
one has best wave functions of this type, calculated without any empirical
parameters, which are called Hartree-Fock wave functions. At the other
extreme one has semi-empirical m-electron theories such as that developed
by Pople.”

To understand the various approximations that have been introduced
into the scF method we must first define the equations on which it is based.
The derivation of these equations is not easy to follow without a good
background in quantum mechanics, and we have therefore put this deriva-
tion in appendix 2 in order to carry the reader through to the more im-
portant parts of the book. o

‘In Hiickel theory the molecular orbitals y are written as a linear com-
bination of atomic orbitals ¢ (the LCAO approximation)

/ v=3cg BBV

and are assumed to be solutions of the equation
Hy = Ep 1.2)
where H is a one-electron operator. If expression (1.1) is substituted into

(1.2) we obtain :
| S c(H — E)p, = 0. (1.3)

The coefficients ¢, are most easily determined by multipiying- (1.3) by
one of the atomiic orbitals ¢, and integrating over all the three dimensional
space.t This gives the so-called secular equations

26 f ¢ H — E)p,dv =0 (1.4)

+ More precisely one should multiply by the complex conjugate of ., but
as most calculations of this type use real orbitals we shall ignore this feature
throughout the book.
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If we define the quantities H,, and S, by

f‘PpH¢v do = pv’ : (1'5)

and _
f puEp, dv = J.%% do = ESaw (18
then the equations have the form
; c(H,, — ES,,) = 0. o -y

There is-one equiation of this type for each atomic orbital @, in the set.

To find their solutions the allowed energies are first determmed by equating
the secular determinant to zero

lH,—ES,{=0,' _ (1.8)

and each energy is then substituted into (l D to determme the appropriate
set of coefficients.

The essential feature of Huckel-type theories is that the operator H
is not defined by the terms in the complete Hamiltonian of the molecule,
Instead it is assumed that the integrals H,, are meaningful quantities whose
values may be determined empmcally, that is by fitting theory and expen«
ment.

The theory finds its s1mp1est form in the familiar ar-electron theory,’
in which the energy of repulsion between electrons is ignored, or at best
assumed to be a constant which is independent of the detailed distribution
of electrons within the molecule. This type of theory is generally called an
independent-electron theory, in the sense that the wave function and
energy of a molecular osbital do not depend on the number of electrons
occupying other molecular orbitals of the molecule. There are modifica-
tians of Hiickel theory, the Wheland-Mann or the w-method for example?,
in which some account is taken of electron repulsion, and these can be
considered as the simplest form of ScF thearies. ‘

The empirical parameters of Hiickel theory are usually given the symbols ,
o and B, defined by

% = [o.Hp, s, 19)

f Hg, dv | (1.10)
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which are called the coulomb and resonance integrals respectively. The
overlap integrals S,, (u ¥ v) may be taken as zero, as in Hiickel =-
electron theory, or they may be calculated from atomic orbital wave
functions, as in Hoffmann’s extended-Hiickel theory of ¢ electrons®.

At this point we shall list a few of the unsatisfactory features of Hiickel
theory which have provided the stimulation for the development of the
more sophisticated theories which are to be described in this book.

1. In general, values of the Hiickel parameters « and § are determined
empirically by fitting theoretical calculations to observed data. However,
the optimum value of the parameters depends on the nature of the experi-
mental data that is under consideration. For example, the first ioniza-
tion potentials of aromatic hydrocarbons correlate closely with the energy
of the highest occupied Hiickel = orbital if this is calculated with § =
—4-0 eV. For the same compounds, the energy of the first strongly allowed
electronic transition (giving the so-called 'La or p-band) is given by the
difference in energy between the lowest vacant .and highest occupled
molecular orbitals calculated with § = —2-4 eV. Finally, if we examine the
correlation between the Hiickel delocalization energy (that is the total
energy less a value of 28 for each formal double bond) and the observed
resonance energy (the difference between the total energy and-that calcu-
lated on the basis of additive bond energies), then from the correlation line

.we deduce f = —0-7eV.¥

From the very large difference between these three values for § one
would conclude that the parameter represents a different combination of
one-electron energies (nuclear attraction and kinetic energy) and two-
electron repulsion energies, for each different type of data. This is what we
find to be the case when we examine the relevant energy expressions of
scF theory.

2. Hiickel theory is more successful for non-polar molecules, such as
hydrocarbons, than for molecules with relatively polar bonds. It is more
successful for alternant aromatic hydrocarbons (e.g. naphthalene), which
in their ground states have a uniform distribution of »r charge over the
carbon atoms, than for non-alternant hydrocarbons (e.g. azulene), which
have a non-uniform distribution of = charge. Thus the dipole moment of
azulene, calculated from Hiickel theory, is about seven times larger than
the experimental value. This discrepancy arises from the neglect of
electron repulsion which is inherent in the assumption that « is independent
of the charge on the atom.

t These parameters are all as deduced by Salem.’
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3. In calculations on hetero-atomic molecules the number of empirical

parameters («x, fxy) needed to carry out a calculation may be very large
whereas the amount of experimental data from which to determine thess
parameters may be relatively small. This problem is present to some extent
in the semi-empirical SCF theories, but as these inake use of a considerable
amount of atomic spectral data it is not usually so severe. If in Hiickel
theory one attempts to take the coulomb integrals directly from atomi¢
spectral data then one usually ends up with unrehsonably large bond
polarxtles again because of the neglect of electron repulsion. Moreover,
it is often necessary to allow for the fact that ax for an X—Y molecular
fragment depends on the nature of atom Y.

4. There are some molecular properties, notably the energies and in-
tensities of some electronic absorption bands, which cannot be fitted at
all by Hiickel theory, or by any theory based on a one-electron Hamil-
tonian. For example, amongst the = molecular orbitals of benzene both
the highest occupied and lowest unoccupled molecular orbitals are
doubly degenerate. If the excitation energy is equated to the difference in
the orbital energies, which would follow if electron repulsion were ignored,

then one would predict a four-fold-degenerate excited state and one strong .

band in the absorption spectrum. It is known, however, that such an
electronic excitation gives three excited states, which give two weak
(symmetry-forbidden) bands in the absorption spectrum and one strong
band.

There are several books? that describe in detail the theory of the
electronic spectra of organic molecules, and we shall not cover this topic
to any large extent in this book. We wish to emphasize however that the
failure of Hiickel theory to explain spectroscopic data played a.large part
in the initial development of the self-consxstent-ﬁeld theories we shall
describe in this book.

The scF molecular orbitals are defined by formally similar equations to
(1.7) and (1.8). They are taken to be engenfunctxons of an operator F

Fy=Ep (L11)

andif the LcAo expansion (1. 1)is adopted, then the coefficients and energies
are determined by the equations

z cv(F;lv - ESnv) = 09 - (1.12)

|F,, — ES,,| =0, (1.13)
where

F,, =,J'<p,,FqJ, do. (1.14)
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However, unlike the Hiickel operator, F is well defined by the elements
of the full Hamriltonian. Its matrix elements, F,,, are given by expressions
first derived by Lennard-Jones,'® Hall'* and Roothaan.®

- ]

Fo=H, '+ ;‘? P, [(u7 | po) — ¥(up | 70))] - (L15)

H¢ is called the core Hamiltonian for an electron. It coﬁsists of the kinetic
energy operator for an electron and the potential energy between an
electron and all-afomic cores of the molecule.

2
He ==
2m

Vi + 3 Va, 1)
A

where ,
V2 = 9%/0x® 4 9%[0y® + 9%f0=>. (1.17)

If all electrons are being specifically included in the calculation then V,

is the nuclear-electron potential energy equal to —Z,e?[r, (Z, being the

nuclear charge). In a 7-electron model ¥, would be the potential energy

of the nuclei together with the repulsion of the ¢ electrons. The complete

" electronic Hamiltonian, 3¢, is made up of the core terms and the po-
tential energy of repulsion of the electrons

#=SHO+ISry (1Y)

It is usual in quantum-mechanical calculations on molecules to work in a
system of units called atomic units in which’the charge and mass of the
electron and k are all taken as unity. In these units the unit of length is the
Bohr radius @, = 0-5292 A and the unit of energy (called the Hartree)
is 27-21 eV. In these units the complete Hamiltonian has the form

H=-3IV'+3V,s +zjr‘,—1 L 119)
[ 4 A i<

The remaining terms in (1.15) give the effect of the electron interaction. '
We use the definition

o] p0) = [0 OROIIR 0@ dos oy (120

which is to be interpreted physically as the repulsion between an electron
distributed in space according to the function ¢,¢, (1) and a second elec-
tron having the distribution ¢,¢, (2).

The final term to be defined in (1.15) is the bond order P,, which is
written '

P,,=2 g CroCros (1.21)
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the summation extending over all occupied molecular orbitals y,. In
m-electron theory P,, has special significance when p and o are atoms joined
tagether because it has been found to be lmearly related to the length ‘of
the p—oc bond.
: Expressxon (1.15) only apphc; to closed-shell elec}ron ‘configurations,
that is when-all occupied molecular orbitals contain two electrons. It
therefore applies to the ground states of most molecules. For' radicals,
or most excited electronic states slightly different equations are required.’¢
Once the elements F,, and the overlap integrals S,, are known the

'SCF orbitals are obtained with the same ease as the Hiickel orbitals. There -
- are however two major difficulties. In the first place one can see from

(1.15) that F,, depends on the bond orders, and these from their definition
(1.21) can only ‘be calculated when the orbitals, that is:the solutions of
(1.12) and (1.13), are known. The equations have therefore to be solved
iteratively. A rough estimate is made of the coefficients c,, (usually these
are taken as the coefficients gbtained from a Hiickel calculation), which
then aliows one to make an estimate of the bond orders and F,, integrals.
The secular equations are then solved to give improved values of the co-
efficients. The cycle of the calculation can be repeated until the coefficients
obtained by solving the secular equations are.the same as those used to
construct F,,: that is the input and output coefficients are self-consistent.
In practice if a reasonable first estimate is made, the Scr cycle is convergent,
but divergent situations can be encountered. -

The second difficulty in solvmg the sCF equations lies in the evaluation
of the integrals involved in F,,, particularly those two-electron integrals
(1.20) in which the four orbitals are all on different atomic orbitals.

‘Except for one-electron atoms, atomic orbitals are not simple func-
tions of the distance between the electron :and the nucleus. Accurate
atomic orbitals are either expressed in tabular form, ¢(r) tabulated as a
function of r, the distance of the electron from the nucleus, or as a linear
combination of simple algebraic functions. It is known from the asymp-
totic form of the solutions of the Schrédinger equation that at large r,
@(r) varies as éxp (—kr), thus the most convenient functions from which to
build up accurate atomic orbitals are the so-called Slater orbitals

Lnim(Ks l‘) Nf""‘ exp(—kr)Y,(6, ¢) - (1.22)

n is an integer, which corresponds to the principal quantum number.
The Y,,,(6, ¢) are the spherical harmonic functions which describe the
angular variation of the orbxtal and are labelled by the quantum numbers
I and m.
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If Slater orbitals are used in the LCAO expansion (1.1), that is the ¢,
are taken as y or as some linear combination of such functions, then the
three and four-centre integrals are difficult to evaluate even on a large

~computer. They must either be obtained by numerical integration or by a
series expansion with relatively slow convergence. One of the reasons that
approximate SCF schemes have been developed is to obviate the necessity
for calculatmg such integrals. This development will be described in the
coming chapters.

An alternative set of functions that have been used to build up atomic
orbitals are gaussian functions which have a radial dependence €xp(—kr?).
These do not have the correct asymptotic limit, but if enough of these
functions are taken in a linear expansion then it is possible to get a reason-
able representation. of an atomic orbital. As a rough guide one can say
that if a Slater orbital is replaced by a sum of 3.to S gaussians then the
results of the SCF calculations obtained with the Slater or gaussian basis

will be similar for most properties of chemical interest. Although one needs
to use more gaussian orbitals than Slater orbitals to obtain the same
accuracy in an SCF calculation, and therefore more two-electron integrals
like (1.20) occur in the calculation, this is more than offset by the relative
ease with which the integrals can be evaluated. The reason for this is that -
the product of two gaussian orbitals on different centres, ¢,¢, is equal to
a third gaussian centred somewhere between the two'?. Because of this all
three and four-centre integrals reduce to two-centre integrals which are
relatively easy to calculate.

There are several different ways in which gaussian orbitals have been
used in SCF calculations. One approach has been to use gaussian orbitals
just to calculate the two-electron integrals over Slater orbitals. Another
approach has been to use them directly as the LcAO expansion functions in
(L.1). In the latter method one may choose to use only spherical gaussians,
and then angular functions like p and 4 orbitals are built up by takiag
combinations of off-nuclear gaussians. Alternatively one can use the
so-called cartesian gaussians like zexp(—kr?) which have an angular
dependence like spherical-harmonic functions (z = r cos 0, has an angular
variation like a p orbital). It is not the main task of this book to givea
critical account of the large number of calculations made with gaussian orb-
itals, even on quite large organic molecules like benzene® and pyridine.?.
At the present time better calculations can be made on medium-sized
molecules using a gaussian basis than a Slater basis, however the balance
between the two methods can change with an advance in computer desxgn
or the techniques of numerical analysis.

The number of molecular orbitals, obtained in an Lcao calculation is
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equal to the number of atomic orbitals in the expansion. If the molecule

has 2n electrons then clearly the absolute minimum number of atomic
orbitals needed is ». In practice the minimum number will be greater than
n as it will consist at least of all the atomic orbitals that are occupied by
electrons in the ground states of the separate atoms. For hydrocarbons
this means one orbital for each hydrogen (1s) and five for each carbon

atom (1s, 25, 2pz, 2py, 2pz). In the absence of symmetry in the molecule

a non-empirical SCF calculation with n atomic orbitals in thé expansion
will require the calculation of n* two-electron integrals and the solution of
the n secular equations. Either.of these can be the limiting factor which
determines the maximum size of a molecule that is amenable even to a
minimum-basis' non-empirical calculation. =
However, if empirical methods are to be used, the size of the molecule
that can be examined may be increased considerably. In the first place some
of the n' two-electron’ integrals may be neglected or be given empirical
values. In the second place it may be possible to eonsider in detail only
the electrons in the outer shells of the atoms, using the argument that
inner-shell electrons (e.g. the s electrons of carbon) are little affected by
bond formation. Fhus the number of atomic orbitals that may be con-
sidered in an empirical calculation may be-significantly less than the
number required for a non-empirical calculation. o :
There is one other justification for the empirical calculation, and this
is that we know that even an exact Hartree-Fock calculation would not
give accurate values of all the quantities we are interested in because it is
not a solution of the Schrodinger equatign. An example of this is the
prediction?® by the Hartree-Fock method that F, is unstable. However, an
empirical calculation may be parameterized in such a way that for a
fami'y of compounds it does give reliable values of the experimental
quantities of chemical interest. We will return to this point later in the
book. :
In the following chapters we deal firstly with the scr developments of
m-electron theory and then with the extension to ¢ electrons. Applications
will be given to a wide range of chemical properties, both for ground and
excited states, and to the interpretation of magnetic resonance properties.
We will conclude by giving our view of the likely development of the
subject.
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