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Preface

This book is a continuation and development of “boundary value problems for non-
linear elliptic equations and systems” and “elliptic, hyperbolic and mixed complex
equations with parabolic degeneracy” (see [167]27),42)). A large portion of the work
is devoted to boundary value problems for general elliptic complex equations of first,
second and fourth order, initial-boundary value problems for nonlinear parabolic
complex equations and systems of second order, and properties of solutions for hy-
perbolic complex equations of first and second order. Moreover, some results about
first and second order complex equations of mixed (elliptic-hyperbolic) type are in-
vestigated. Applications of nonlinear complex analysis to continuum mechanics are
also introduced.

In Chapters 1 and 2, various boundary value problems for general elliptic com-
plex equations of first and second order under weaker conditions in multiply con-
nected domains are discussed. These include the nonlinear Riemann-Hilbert prob-
lem and the Poincaré boundary value problem, where the lower terms of nonlinear
elliptic complex equations contain an explicit nonlinear part, and domains may
have non-smooth boundaries. In Chapter 3, we prove, in detail, the existence the-
orems of solutions of some boundary value broblems for nonlinear elliptic systems
of first, second and fourth order equations.

Chapter 4 addresses not only initial-boundary value problems for nonlinear
nondivergent parabolic equations of second order with measurable coefficients, but
also initial-boundary value problems for nonlinear nondivergent parabolic systems
of second order equations with measurable coefficients. These materials are not
available in any other published books.

In Chapter 5, the hyperbolic elements and hyperbolic complex functions are
‘introduced, which are correspondents of complex functions in the theory of elliptic
complex equations. On the basis of hyperbolic notations, the hyperbolic systems
of first order equations and hyperbolic equations of second order are reduced to the
complex forms. Boundary value problems for some hyperbolic complex equations
of first and second order are then discussed. In Chapter 6, we consider boundary
value problems for complex equations of mixed (elliptic-hyperbolic) type by using
the complex analytic method. There are many open problems about complex
equations of mixed type, which remain to be further investigated.
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Applications of nonlinear complex analysis to continuum mechanics are con-
sidered, which can be seen in Chapter 7, where some free boundary problems in
planar filtrations, gas dynamics and elastico-plastic mechanics are discussed.

Similarly to the book [168]1), the complex equations and boundary conditions
studied in this book are rather general. However, two special features are presented
in this book: one is that elliptic and parabolic complex equations are discussed in
nonlinear cases and many boundary value problems are studied in multiply con-
nected domains, and the other is that complex analytic methods are used to inves-
tigate various problems on elliptic, parabolic, hyperbolic equations and systems, as
well as equations of mixed type.

The great majority of the contents in this book originates in studies of the au-
thors and their cooperative colleagues, and a large number of results are published
" here for the first time. Many questions investigfxted in this book deserve further
investigations. We sincerely hope the reader will enjoy reading the book.

Finally, the preparation of this book was supported by the National Natural
Science Foundation of China (No.10671207), its support has provided a wonderful
environment for us to obtain many results reported in this book. In the meantime
the authors would like to acknowledge the editorial staff of Science Press for making
the publication of this book possible.

Guochun Wen
Dechang Chen
and
Zuoliang Xu
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Chapter 1

Nonlinear Elliptic Complex Equations of
First Order

In this chapter, we mainly discuss continuous and discontinuous Riemann-Hilbert
boundary value problems for some elliptic systems of first order equations includ-
ing the degenerate elliptic systems of first order equations. Firstly we reduce the
systems of first order equations with measurable coefficients to a class of complex
equations, give the representations and a priori estimates of solutions of the bound-
ary value problems for the class of elliptic complex equations, and then prove the
existence and uniqueness of solutions for the boundary value problems.

1.1 Discontinuous Riemann-Hilbert Problem for Nonlinear
Uniformly Elliptic Complex Equations of First Order

First of all, we reduce the general uniformly elliptic systems of first order equations
with certain conditions to the complex equations, and then give a priori estimates of
solutions of the discontinuous Riemann-Hilbert problem for the complex equations,
finally we verify the solvability of the above boundary value problem.

1.1.1 Reduction of general uniformly elliptic systems of first order
equations to the standard complex form

Let D be a bounded simply connected domain in R? with the boundary dD.
Without loss of generality, we consider that 8D is a'smooth closed curve 8D € C}L,
where p(0 < p < 1) is a positive number, because the requirement can be realized
through a conformal mapping. We first consider the linear uniformly elliptic system

of first order equations
a1ty + Q12Uy + bi1ve + blz’l)y = aqiu+ bhv +c, (1 1 1)
21Uz + Q22Uy + b21Vg + baovy = agu + bav + ¢z,

where the coefficients a;k, bjk,a;,b;,c; (j, k = 1,2) are known real bounded mea-
surable functions of (z,y) € D. The uniform ellipticity condition in D is as follows
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J = 4K Ky — (K2 + K3)?
(1.1.2)
=4KsKg — (K2 — K3)2 2Jo>0, K;>0in D,

in which Jj is a positive constant and

a1 by a1 b2 a2 bn
Kl = 1y K2 = ) K3 = I

az1 by a1 ba aze by

a2 b1 011 Q12 b1 b1
K, = , Ks= , Kg=

aze by az1 a2 bay  bao

From J > 0 it follows that
KiKg>0,0or K1Kg <0, ie K;>0, Kg f,16 0.

There is no harm in assuming that Kg > 0. Hence from the elliptic system (1.1.1),
we can solve vy, v, and obtain the system of equations.
A\

Uy = aug + buy 4 agu + bov + fo,
(1.1.3)
—vz = dug +cuy +cou +dov + 9o,
where a = K /Ks, b = K3/Ks, ¢ = K4/ K, d = K2/ Kg, and the uniform elliptic-
ity condition (1.1.2) is transformed into the condition

J 1
A=Z}g=ac—z(b+d)2>Ao>0, a>0, (114)
where Ay is a positive constant and a, b, ¢, d are bounded for almost every point in
D. Noting that

. . 1 . 1 .
z=z+iy, w=utiv, wz=§(wx—1wy), w2=§(wz+1wy),

i

Uy ==(w, + Wz + wz +Wy), uy:—z-(wz —~ Wz — Wz + W),

[ 1 TR O

Vg = (—’UJZ +H1’g—w5+iﬁz), ’Uy:§(’wz +E§—'I_U2—’l_.l)_z),

the system (1.1.3) can be written in the complex form
wz = Q1(2)w, + Q2(2)Ws + A1 (2)w + A2(2)W + Aa(2), (1.1.5)

where 2 —_
el -(a—-D@ +1)

—2¢2
z)=
()= P

~lar +1P=gef?’

Q1(2)

*

a(D)=jla+etid-b), a()=;l-c+id+0).
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On the basis of
1
lor + 112 — |g2f? = 2 +at c)® + (d — b)) — [(a ¢)?+(d+b)?
d—b\?
=1+a+c+ - +A421+4,

the uniform ellipticity condition (1.1.4) can be written in the complex form

1Q1(2)| +[Q@2(2)[ < g0 < 1, (1.1.6)

in which go is a non-negative constant. If the coefficients a;z,b;r € WI} (D), p >
2, 3,k = 1,2, then the following function n(z) can be extended in Dgp = {|2]| £
R} (D D, 0 < R < 00), such that n(z) € W, (Dg), thus the Beltrami equation

- n(Z)CZ = 07

2Q1(Z) (1.17)
14+1Q1 2~ Q22 +/[1+]Q112—{Q(2) 212 - 4] Q1 [?
has a homeomorphic solution {(z) (€ W2 (Dr)) with its inverse function z(¢) €

Wz?o (GR), herein Ggr = {(Dgr) and po (2 < po < p) is a positive constant. Setting
w = w[z({)], the complex equation (1.1.5) is reduced to the complex equation

n(z)=

wg = Q(O)@g + B1(¢)w + Ba(¢)w + Bs((), (1.1.8)

. in which

Q2[2(Q)]
1~ n[2(¢)]@:[z(Q)]

Bi(¢) = {A1[=(O)] + AL(NQ(Om=(ON} ze,
By(C) = {A2[z(O)] + A1 [z(O)]R(Onl2(O} Z¢,

Bs(¢) = {As[2(Q)] + As[=(OIQ(C)n=(ON} 2.

Setting W(¢) = w(¢) — Q(¢)w((), the complex equation (1.1.8) can be transformed
into the complex equation

Q) =

We=CLOW + Ca QW +CalQ), (1.1.9)
in which

B1+(B:~Q:)Q
1-Q2 7’

B1Q+B2~Q¢

@)= T-1QF

Ca(O)= Cs(¢) = Bs,
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(see [167]9),(168]1)). This is a standard complex form of the uniformly elliptic
system (1.1.1), which is called the nonhomogeneous generalized Cauchy-Riemann
system, and the solution of homogeneous generalized Cauchy-Riemann system in
D is called the generalized analytic function (see [159]1)).

For the nonlinear uniformly elliptic system of first order equations

Fi(z,y,u,0,Us,V5,Uy,vy) =0 in D, j=1,2 (1.1.10)
under certain conditions, we can transform the system into the complex form
wy = F(z,w,w;), F=Qiw,+ QWz+ Aiw+ AW+ A3z, z€D, (1.1.11)

in which Q; = Q;(2,w,w;),j = 1,2, A; = A;(2,w), j = 1,2, 3 (see [167]9),[168]1)).
We assume that equation (1.1.11) satisfy the following conditions.

Condition C

1) Qi(z,w,U)(§ = 1,2), Aj(z,w) (7 = 1,2,3) are measurable in z € D for
all continuous functions w(z) in D* = D\Z and all measurable functions U(z) €
L,,(D*), and satisfy

Ly[A;,D] < ko, j = 1,2, Lp[A3,D] < ky, (1.1.12)

where Z = {21, ,2m}, 21, '+ , 2m are different points on the boundary 8D ar-
ranged according to the positive direction successively, and pg, p (2 < po < p), ko, k1
are non-negative constants.

(2) The above functions are continuous in w € C for almost every point z €
D,UeC,andQ;=0(j=1,2),4;=0(j=1,2,3)for 2 ¢ D.

(3) The complex equation (1.1.11) satisfies the uniform ellipticity condition

|F(z,w,U1) — F(z,w,U2)| € qo|U1 — Ual, (1.1.13)

for almost every point z € D, in which w, U1, U, € C and ¢g (< 1) is a non-negative
constant.

1.1.2 Representation of solutions of the discontinuous Riemann-Hilbert
problem for elliptic complex equations

Let D be-a bounded domain in C with the smooth boundary 8D = I'. Now we
formulate the discontinuous Riemann-Hilbert problem for equation (1.1.11).

Problem A The discontinuous Riemann-Hilbert boundary value problem for
(1.1.11) is to find a continuous solution w(z) in D* satisfying the boundary condi-
tion .

Re[A(2)w(2)] =r(z), ze€I'*"=0D\Z, (1.1.14)
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where A(2),7(z) satisfy the conditions
Ca[A(z), Fj] < k:o, Ca[Rj(z)r(z),Fj] < k2, ] = 1, e, (1.1.15)

in which A(z) = a(z) +ib(2),|A(z)| =1 0n 9D, and Z = {21, -+ , zy,} are the first
kind of discontinuous points of A(2) on 8D, I'; is an arc from the point z;_; to
zj on 0D, and does not include the end points z;_1,2; (j = 1,2,--- ,m), herein
20 = zm, Rj(2) = |2 — zj_1|P1|2 — 2|, a (1/2 < @ < 1), ko, k2, 8 = min(a, 1 —
2/po), B;(0 < B; < 1),~; are non-negative constants and satisfy the conditions

Bi+tv<B, j=1,--,m, (1.1.16)
where v;(j = 1,--- ,m) are as stated in (1.1.17) below. Problem A with A3(z) =0
in D, r(2) =0 on I'* is called Problem Ag.

Denote by A(z; — 0) and A(z; + 0) the left limit and right limit of A(z) as

z—2;(j=1,2,--- ,m) on 8D, and

s Az;—0) 1. AMzi=0) o

io; M0 1, Mg-0) ¢
Nz 40y TR0 xR

b;

T

(1.1.17)
K; = [ ] +Jj, Jj=0o0r1l j=1,---,m,
in which 0 € y; <1 when J; =0,and -1 <vy; <O0when J; =1, =1,---,m.
The index K of Problems A and Ag is defined as follows

1 m b,
=Ky 4+ -+ K.)= L2 1.
K =5(Ki+- -+ Kn) ;[2“ 2] (1.1.18)
If Mz) on I is continuous, then K = A arg A(z)/2n is a unique integer. Now the
function A(z) on I' is not continuous, we can choose J; = 0 or 1, hence the index
K is not unique. If we choose K = —1/2, then the solution of Problem A is unique.
In order to prove the solvability of Problem A for the complex equation (1.1.11),

we need to give a representation theorem for Problem A.

Theorem 1.1.1 Suppose that the complexr equation (1.1.11) satisfies Condition
C, and w(z) is a solution of Problem A for (1.1.11). Then w(z) is representable by

w(z) = B[¢(2)]e??) + y(2), (1.1.19)

where ((z) is a homeomorphism in D, which guasiconformally maps D onto the
unit disk G = {|¢| < 1} with boundary L = {|¢| = 1}, such that three points on I
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are mapped onto three points on L respectively, (¢) is an analytic function in G,
Y(2), ¢(2),((z) and its inverse function z(() satisfy the estimates

Cﬂ[¢(z)7D]<k37 Cﬁ[¢(z)7D]<k37 Cﬂ[C(Z)aD]<k3’ C,B[Z(C)aé]sk?n (1120)
LP0[|¢2| + |'¢}z|7D] < ks, Lpo”‘f’il + ]¢z|,D] < ks, (1.1.21)

Oﬁ[Z(C),G] < k37 LP0[|X2| + |Xz|,D] < k4a (1122)
in which x(z) is as stated in (1.1.27) below, B = min(e, 1 — 2/pg), po (2 < po <
p), ki = k;(go,po, B, ko, k1, D) (j = 3,4) are non-negative constants dependent on
qo, Po, B, ko, k1, D. Moreover, if the coefficients Q;(z) =0(j = 1,2) of the complex
equation (1.1.11) in D, then the representation (1.1.19) becomes the form

w(z) = $(2)e?®) 4 (z), (1.1.23)

and when K < 0, ®(z) satisfies the estimate

Cs[X (2)®(2), D] < My = My(po,d,k, D) < oo, (1.1.24)
in which
T Yil+ T, 7'<0aﬁ'< Yils
=[1lz-2", n= Pl ’ 3 < bl (1.1.25)
. |B;| + 7, for other case.

Here v; (j = 1,---,m) are real constants as stated in (1.1.17), 7,6 (0 < § <
min(8,7)) are sufficiently small positive constants, k = (ko, k1,k2), and My is
a non-negative constant dependent on pg, 8, k, D.

Proof We substitute the solution w(z) of Problem A into the coefficients of
equation (1.1.11) and consider the following system

| ) W, 29 z 0,
¢i=Q¢z+A1’l/}+A2¢+A3, Q={ Q1+Q2'UJ /w w ;é

0, w, =0 or 2¢ D,
$:=Q. +4, A={ ArtAs(w=g)/(w=y), wlz)-v(z)#0,
0 w(z) —¥(2) =0 or z¢ D,

=QW., W(z) = 2[((2)].

(1.1.26)
By using the continuity method and the principle of contracting mapping, we can
find the solution .
f()
z —>~dg,
) // (-2 (1.1.27)

#(z) =Tyg, ((2)=¥[x(2)], x(z)=2+Th
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of (1.1.26), where f(2),g(2), A(2) € Lp,(D), 2 < po < p, x(#) is a homeomorphism
in D, ¥(x) is a univalent analytic function, which conformally maps E = x(D)
onto the unit disk G (see {159]1)), and &(¢) is an analytic function in G. We can
verify that ¥(z), ¢(z), ((2) satisfy the estimates (1.1.20) and (1.1.21). It remains
to prove that z = z({) satisfies the estimate (1.1.22). In fact, we can find a
homeomorphic solution of the last equation in (1.1.26) in the form x(2) = 2 + Th
~ such that [x(2)]z, [x(2)]z € Lp, (D) (see [168]1)). Next, we find a univalent analytic
function ¢ = ¥(x), which maps x(D) onto G, hence { = {(z) = ¥[x(z)]. By
the result on conformal mappings and the method of Lemma 2.1, Chapter II in
[168]1), we can prove that (1.1.22} is true. When @Q;(2) =0in D, j = 1,2, then
we can choose x(z) = z in (1.1.27). In this case P[((z)] can be replaced by the
analytic function @(z), herein W(z),((2) are as stated in (1.1.27). It is clear that
the representation (1.1.19) becomes the form (1.1.23). Thus the analytic function
(2) satisfies the boundary conditions

Re[A(z)e?® &(2)] = r(z) — ReA(2)¥(2)], ze I (1.1.28)

On the basis of the estimate (1.1.20), and by the methods in the proof of Theorem
1.1 or 1.8, Chapter IV in [168]1), we can prove that &(z) satisfies the estimate
(1.1.24).

1.1.3 Existence of solutions of the discontinuous Riemann-Hilbert prob-
lem for nonlinear complex equations in the upper half-unit disk

We first consider a special domain, i.e. D is an upper half-unit disk with the
boundary I = I'U~, where I' = {|z| = 1,Imz > 0} and y = {-1 <z < 1,y = 0}.

Theorem 1.1.2 Under the same conditions as in Theorem 1.1.1 for the above
domain D, the following statements hold.

(1) If the index K > 0, then Problem A for (1.1.11) is solvable, and the general
solution includes 2K + 1 arbitrary real constants.

(2) If K < 0, then Problem A has —2K — 1 solvability conditions.

Proof Let us {ntroduce a closed, convex and bounded subset B; in the Banach
space B = Ly, (D) x Ly (D) x Lpy(D) (2 < po < p), whose elements are systems
of functions ¢ = [Q(2), f(2), g(2)] with norms ||g|| = Lp,(Q, D) +Lp,(f, D) +
Ly, (g, D) satisfying the conditions

1Q(2)|<g0 <1, Lp[f(2),D)<ks, Lp,lg(2),DI<ks, z€D, (1.1.29)

- where qo, k3 are non-negative constants as stated in (1.1.13) and (1.1.21). Moreover
we introduce a closed and bounded subset B in B, the elements of which are
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systems of functions w = [f(z), g(2), h(z)] satisfying the condition

Lpo[f(z)aD] < k4’ Lpo[g(z)vb] < k4’ Ih(z)l < q0|]- + th? (1'1'30)

where ITh =~ [ [ 10(0)/(¢ — =Jaac.

Arbitrarily selecting ¢ = [Q(2), f(2),9(2)] € Bi, and using the principle of
contracting mapping, we see that a unique solution A(z) € Ly, (D) of the integral
equation '

h(z) = Q(2)[1 + II k) - (1131

can be found, which satisfies the third inequality in.(1.1.30). Moreover, x(z) =
z + Th is a homeomorphism in D. Now, we find a univalent analytic function
¢ = W(x), which maps x(D) onto the unit disk G as stated in Theorem 1.1.1.
Moreover, we find an analytic function &(¢) in G satisfying the boundary condition
in the form

Re[A()2(O)] = R(¢), (eL™=((I"), (1.1.32)
in which {(2) = ¥[x(z)] with 2(¢) as its inverse function, ¥(z) = Tf, ¢(z) =

Tg, A(C) = M=(Q)] exp[dGO)], R(C) = rl2(0)] — ReAFO)((0))], where A(C),
R(¢) on L* satisfy conditions similar to those of A(z),r(2) in (1.1.15) and the index
of A(¢) on L is K. In the following, we first consider the case K > 0. By using
Theorem 1.1.1, we can find the analytic function @(¢) in the form (1.73), Chapter
I, [168]1), where 2K + 1 arbitrary real constants can be chosen. Thus the function
w(z) = P[¢(2)]e*® + (2) is determined. Afterwards, we find out the solution
[F*(2), g*(2), h*(2), @*(2)] of the system of integral equations

f*(2)=F(z,w, I f*)—F(z,w,0)+A1(z, w)T f* +A2(z, w)T f*+A3(z,w), (1.1.33)

Wg*(2)=F (z,w, WIIg* + IT f*)—F (z,w, IT f*) +A1 (2, w)W+Az(z, w)W, (1.1.34)
S (X)h* (2)e) = F (2, w, 8 (x)(1+ Th*)eH®) + W T g" + 11 £7)

(1.1.35)
—F(z,w,WIlg* + II f*),
@@ = mrp 500 = [#(I00) (1.1.36)

and denote by ¢* = E(g) the mapping from ¢ = (Q, f,9) to ¢* = (@, f*,g%)-
According to Lemma 5.5 from Chapter III in [168]1), we can prove that ¢* = E(q)
continuously maps By onto a compact subset in By. By means of the Schauder
fixed-point theorem, there exists a system q = (Q, f, g) € By, such that ¢ = E(q).
Applying the above method, from q = (@, f, g), we can construct a function w(z) =
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B[¢(2)]e?® + 1(2), which is just a solution of Problem A for (1.1.11). As for the
case K < 0, it can be similarly discussed. But we first permit that the function ¢(¢)
satisfying the boundary condition (1.1.32) has a pole of order |[K +1]| at ( = 0. If
—2K is an even integer, then we need to add a point condition: Tm[A(z})w(z})] = bo,
where z{, is a fixed point on I'*, by is a real constant, and then find the solution
of the nonlinear complex equation (1.1.11) in this case. From the representation
w(z) = P[¢(2)]e?®) + (2), we can derive the —2K — 1 solvability conditions of
Problem A for (1.1.11).

Besides, we can discuss the solvability of the discontinuous Riemann-Hilbert
boundary value problem for the complex equation (1.1.11) in the upper half-plane
and the zone domain. We mention that some problems in nonlinear mechanics as
stated in [21]2) and [120]2) can be solved by the results in Theorem 1.1.2.

1.1.4 The discontinuous Riemann-Hilbert problem for nonlinear com-
plex equations in general domains

In this subsection, let D’ be a general simply connected domain with the boundary
I'" = I'{Ul}, herein I'1, I} € C}, (0 < p < 1) and their intersection points 2, 2” with
the inner angles a7, aom (0 < a3, a2 < 1) respectively. We discuss the nonlinear
uniformly elliptic complex equation

wr=F(z,w,w,), F=Qiw,+QW;+A1w+Asw+As3, zeD, (1.1.37)

in which F(z,w,U) satisfies Condition C in D’. There exist m points Z = {z; =

2y 2y =2"--- 2y, = 20} on I'" arranged according to the positive direction
successively. Denoted by I the curve on I from z;_1 to 2; (j = 1,2,--- ,m),
where I'; does not include the end points z;_1,2; (j =1,--- ,m).

Problem A’ The discontinuous Riemann-Hilbert boundary value problem for
(1.1.37) is to find a continuous solution w(z) in D* = D"\ Z satisfying the boundary
condition

ReA(2)w(z)] = r(2), zeI'*=I"\Z,
: (1.1.38)

ImM(2))w(z;)] = b, j=1,---,2K+1,
where 2], -+, 251 (¢ Z) are distinct points on I and b; (j = 1,--- ,2K +1) are
real constants, and A(2), r(2), b; (j =1,--- ,2K + 1) are given functions satisfying
Ca[)\(z),rj]<ko» Ca[RJ(Z)T(Z)7FJ]<k2a .7=1a ym,
(1.1.39)
bj| < k2, j=1,---,2K+1.
Herein a (1/2 < a < 1), ko, k2 are non-negative constants, R;(z) = |z — zj_1|%—1
x|z — 2P, Bj +7; < B = apmin(a, 1 — 2/po), vj,B;(j = 1,--- ,m) are similar to
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those in (1.1.16) and (1.1.17), and ap = min(@1,a2). Problem A’ with Az(2) =0
inD',r(z) =0on I, and b; = 0(j = 1,--- ,2K + 1) is called Problem Ay, in
which K (> —1/2) is the index of A(z) on I' as defined in (1.1.18).

In order to give the uniqueness result of solutions of Problem A’ for equa-
tion (1.1.37), we need to add one condition: For any complex functions w;(z) €
C(D*),U;(2) € Lpy,(D*) (2 < po < p,j = 1,2), the following equality holds

F(z,wy,U1)—F(z,w1,U2)=Q(U1 —Us)+ A(wy —wz) in D, (1.1.40)

in which |Q(z, w1, w2, U1, U2)| < qo, A(2z, w1, w2) € Ly, (D). Especially, if (1.1.37) is
a linear equation, then the condition (1.1.40) obviously holds.

Applying a similar method as stated in the proof of Theorem 1.1.1, we can
prove the following theorem.

Theorem 1.1.3 If the complex equation (1.1.37) in D’ satisfies Condition C,
then Problem A’ for (1.1.37) is solvable. If Condition C and the condition (1.1.40)
hold, then the solution of Problem A’ is unique. Moreover the solution w(z)
can be expressed as (1.1.19) satisfying the estimates (1.1.20)—(1.1.22), where § =
apmin(e, 1 —2/po). If Q;(2) =0(j =1,2),2 € D’ in (1.1.37), then the represen-
tation (1.1.19) becomes the form

w(z) = B(2)e?) + ¢(2), (1.1.41)

and w(z) satisfies the estimate

Cs[X (2)w(z), D] < My = Ma(po, 6, k,D’) < oo, (1.1.42)
in which
m
X(2)=. H |z— 23| |2— 21|/ | 2 — 2| ™/ o2,
J=1j#1,n
(1.1.43)
vl + 7 % <0, B; < Il
|ﬁj|+7’, v; =0 and y; <O,ﬂj>l’)’j|.
Here v;(j = 1,---,m) are real constants as stated in (1.1.17), 7,6 (0 < § <

min(3,7)) are sufficiently small positive constants, and.Mz = Ma(po,d,k,D’) is
a non-negative constant dependent on po,d,k, D’ (see [167]42),(183]6)).

1.2 Boundary Value Problems for Elliptic Complex Equa-
tions with Nonsmooth Boundary

This section mainly deals with the Riemann-Hilbert problem for general nonlinear
elliptic systems of first order equations in bounded domains with a non-smooth



