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PREFACE

This work represents the proceedings of the 1984 IMACS European Meeting on "Digital Techniques in
Simulation, Communication, and Control (DIGITECH '84)" held at Patras University, Greece (July 9-12,
1984). This Meeting belongs to a series of IMACS meetings in European countries with objective the
exchange of the latest research and practical developments in the field of "System Simulation" and
closely related areas. DIGITECH '84, which took place in parallel with the "First European Workshop
on Real-Time Control of Large Scale Systems" has really provided a unique opportunity to our collea-

gues from seventeen countries for crossfertilizing interactions in the digital system engineering
field.

The book involves 90 papers which are classified in the following five parts:

Modelling and simulation,

Digital signal processing and 2-D system design =
Information and communication systems,

Control systems, and

5. App]icationS {robotics, industrial and miscellaneous applications).

W N e

The volume contains sufficient amount of information which reflects very well the state-of-art of the
field of digital techniques.

I am grateful to the members of the scientific committee for their help in selecting the papers, the

session chairmen for their assistance in running the meeting, and the authors of the papers for their
high-level presentations,

Especially, I would like to thank Professor Robert Vichnevetsky, the President of IMACS, for his
coming at the Meeting. His presence, together with the presence of Professor Manfred Thoma, the
President of IFAC, who came for the Workshop, gave a special emphasis on the importance of the coupl-
ing between the IMACS Meeting and the EEC Workshop. Many thanks are also due to our distinguished
colleagues who presented their exciting invited plenary papers.

Finally, a special word of thank should be addressed to the University of Patras for its hospitality
and generous support.

In recent years, Greece has become the heart of a conference activity on systems, control and informa-

. tion sciences. It is hoped that this activity will steadily continue for the benefit of the whole
Eastern Mediterranean and Middle East regions.

Patras, July 1984 Spyros G. Tzafestas
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MODEL REDUCTION BY WALSH FUNCTION TECHNIQUES

S. Kawaji and T. Shiotsuki

Department of Electronic Engineering
Kumamoto University

Kumamoto 860,

Japan

This paper discusses the application of Walsh functions expansion to reduce the order

of a linear time-invariant system.

First, model reduction of linear continuous systems

by matching the Walsh spectra of output responses of the original and reduced models,

subject to the specific inputs, is discussed.
constraints on the structure of the reduced model is discussed.

Secondly, model reduction under linear
The latter has the

advantage that the reduced model is stable and/or cause no steady-state error.

1. INTRODUCTION

Because of its importance in systems analysis
and in the design of controllers, model reduc-
tion methods have received considerable attention
over the past two decades [1]. The object of
model reduction is to find a lower order model
which preserves the dynamics of more complex,
higher order system in both time and frequency
domains. From this point of view, the model
reduction in some aspects can be considered as a
data matching process. The reduced order model
may be determined by applying an identification
procedure to input-output data obtained by driv-
ing the original system with a specisal input.

Recently, the Walsh functions have been used by
many workers to analyse a wide range of systems
[2]-{4].  The Walsh functions appear to be
suited for digital processing of continuous time
signals, and Walsh spectra characterisation of
signals reduces the calculus of dynamic systems
to an algebra in the approximate sense of least

squares, through the so-called operational
matrices.

In this paper, a new method via the Walsh func-
tion techniques is proposed for obtaining a
reduced model for high order systems. First,
the output data of the original and reduced
models with respect to polynomial inputs are
transfered into the Walsh spectra. Then by
matching the two spectra, the parameters of the
reduced model cen thus be determined. §econdly,
in order to preserve the stability requirement
and/or to achieve steady state agreement between
the originel and reduced models, model reduction
under linear constraints on the structure of the
reduced model is discussed. Example for
illustrative purpose is given with satisfactory
result.

2. WALSH FUNCTIONS

The Walsh functions are a set of square waves
and the system of Walsh functions is orthonormal

and complete [5]. Fig. 1 shows the functions
from ¢O to ¢T in the dyadic order.

$p 1! .
S T

o1 G N
V] 7
_1 L———_——————j

¢i2 :|~ 1'
0 Yy
_1 _]

43 J—1 l"'—_1 y
1 1

by f 1 1
3 I

s .
B R I I N R A B B

¢ ,F
i B —
-1

7 l -
B | T

Fig. 1 Walsh functions

It is well known [6] that a square-integrable
function £{t) on the interval [0,1) may be
approximated in terms of the Walsh functions as
’ N=-1
T fo¢, () (1)
1=0 ivi
k

where N = 2%, k an intger.

£(t) =

¢;(t) is i-th Welsh
function defined in [0,1), and f, the correspond-

ing coefficient. Egn. (1) can ~ be concisely
written as

£t) = F¢N(t) (2)
where

Fo= g, £, 00, £ (3)
and

8850165



4 S. Kawaji and T, Shiotsuki A

ey(t) = [ og(t), 9, (5), - (1% ()

» dno1

The coefficient fi are chosen to minimize
1 2
e = I (e(e)-Fo (£)]° at (5)
0
and it is uniquely given by
1
£, = I £{t)¢. (%) at (6)
i 0 i

{fi} is also referred to as the spectrum of f(t).

The integration of Walsh function vector is re-
lated approximately to the Walsh function vector

itself. That is,
t
JodiN(t)dt = PNQN(t) (1)
where
- 1
v Ty
P, = 2 2 (8)
L 0
2N °N N
2 2
i 1
p = |2 Tk
2
;o
%

is called the Walsh operational matrix for inte-
gration.

Repeated application of P_ for the repeated in-

tegration implies that N
[ foac-
cees oo (t)dtY = Plo (t) (9)
0’0 0 N NN
J-times

Thus the integration is approximately achieved
by premultiplying the spectral vector with the
operational matrix. The result is of consider-
able importance to us increasing the calculus of
continuous dynamical systems to an approximate
(in the sense of least squares) matrix algebra.

3. MODEL REDUCTION

Consider a linear time~inverient continuous
system whose transfer function is given by

sn—l+ n-2

_¥(s) bl b2s + ---+‘b‘ (10)
Gis) = U(_s)l' ) .

n n
s +a;8 T+ ver 4g

where Y(s) and U(s) are respectively the Laplace
transforms of the input y(t) and the output u(t).
Eqn.(10) can also be represented by a differen-
tial equation

(n-1)

v e eyt ) e va o)

_a(n1) (n-2)

1 t)+b.u

5 (t)+'°-+bnu(t) (11)

with zero initial conditions.
side of (11) n times, we have

t bt t n
y(t) + alj y(t)at+ soe+ anJOJo"'joy(t)dt
0

Integrating both

t trt t
= blj u(t)at + ses +an I j u(t)at® (12)
0] 0’0 0

Both y(t) and u(t) may be approximately expressed
respectively by Walsh functions of size N as

y(8) = e (t) (13)

1]

1’2

u(t) u«»N(t) (1)

We now deal with the case of input functions of
the form

2 1
u(t) = By *Bit +Bt +oen Bt (15)

where I is some intger. Note that for 1=0 we
include step function, and for°l=1 the ramp

function. The Welsh coefficient vector of u(t)
in {15) is
l .
- : i
U .Z (1.)BigPN (16)
i=0
where
e= {1, 0, ==+ , 0] (17)

is the Walsh coefficient vector of the unit-step
function and is derived from (6).

Substituting (13), (14) into (12) and application
of (7) yields

n
Y[I+a1PN+ +anPN]-¢N(t)
2 n
= U[blPN +o P+ +anN] ¢N(t) (18)

Since eqn.(18) must be satisfied for any value
of t, equating of coefficients of ¢N(t) gives

YI+aPo+oee +anP;]

= 2 L ] n
= U[blPN+ b Py + +anN] (19)

For given values of ai and b,, the Walsh coeffi-
clent vector of the olitput i% calculated as

LU D S |
Y=U{cL biPN} {z aiPN} (20)
i1=0 i=0
ey =1, bo =0
Assume that the transfer function of the reduced
model is of order m with m<n. Then
s B et ™% etk p
2 _X(s) _ 1 2 m
G(s) = U(s)  m. ~ m1 - (21)
5 + a, s +ees 4+

where Y(s) is the Laplace transform of output
¥(t) of the reduced model. The coefficient a;
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and b, are to be determined so that G(S) may be
an approximate model for G(s).
Letting the Walsh functions expansion of §(t) be
y(t) = o (t) (22)
where
¥= [y ¥y s Yyoq! (23)
Similar to the case (10), we get

0Ly m., 4
Y( 3 aiPN) =U( biPN) (2m)
i=0 i=0
;o =1, ﬁo = 0

The Walsh spectra matching means that letting
Y=Y in (24). ‘Thus

. m .

[ . |

aiPN) = ng biPN) (25)
0 i=0
Since Y is evaluated from eqn.(20) and U is given,
(25) may be used to estimate the parameters of
the reduced model. For N> 2m, the unknown para-
meters {a.} and {b.} can be obtained by the least
square estimate. 1

m
Y( 1
i=

‘Let the equatflon error be

mo_o mo
e=Y X a P -UZTLDBD.P
j=q 1 N =0 iN
=Y - X0 (26)
where
- 2 ., n
X = [-YPN, ~YPL, s "YPN’ UPseees Upg]
{27)
A a PO ~ 5T
8 = [ala 8-2, trc, a-ms b19 MY bmj (26)

It is desired to obtain the best estimate of the
coefficient vector such that the cost function

J = eTWe (29)

is minimized, where W is a weighting matrix. The
least square estimate of @ is

B8 = (XTWX) WY (30)

Once & is obtained, the reduced model of (21) is
established.

REMARK : Recall that the Walsh functions are
defined on the interval [0,1). Hence, if we
evaluate the responses of the original and
reduced models on the interval [0, T), we may
change the time scaling for normalizing, by
letting t = t/T. Then, the Walsh operational
matrix should be

P, = TPy {31)
Further, in order to maintain accuracy, computa-
tions have to be made with increased N, the size
of Walsh functions.

4. MODEL REDUCTION UNDER LINEAR CONSTRAINTS

The above model reduction method cannot guarantee
to obtain a stable reduced model if the original
model is stable one, and to cause no steady state
response error between the original and reduced
models.

Tor the stability requirement, combined methods
may be used. That is, the conventional stable
methods such as dominant pole retention, Routh
approximation, Hurwitz polynomial approximation,
ete. sre used to determine the coefficients {a.}
of the denominator of transfer function of the
reduced model. Then, Walsh spectra matching is
used to determine the coefficients {ﬁi} of the
numersator of the reduced model.

Also, the condition that the reduced model does
not produce steady state error to step-input is

¥(=) = y(=) (32)
which implies that

b /a =5 /a (33)
n'n m m

It folldws that under the constraint (33) the
Walsh spectra matching must be applied.

These constraints on the structure of the reduced
model can be, in general, expressed as
RO =T ‘ (3k4)

Therefore the cost function €29) is to be mini-

mized under the linear constraint (34). Let
R be any matrix which renders
#
_ IR
R, =
nonsingular, and define as
3 = 2o (35)
el = B, X)) (36)
* 1 2 B
then, equation error (26) can be rewritten as
e = (Y-XT)-X0 . (37}
Hence, the least squre estimate of 5 is
ol -1 :
0 = (X,Wx;) W(Y-X,T) (38)
‘and 6 is given by
]
~ -1
Q@ = Ry (39)
r

Thus the optimal coefficients of the reduced
transfer function are completely determined.

5. ILLUSTRATIVE EXAMPLE

To illustrate the method, s model representing
the pich rate control system of a supersonic



aircraft [8] is considered. This is one of
nodels considered by many workers. The transfer
function is given by

375000(s + 0,08333)
sT4 83.6hsg+ h09755 + T03k2s
+ 853703s° + 28142718 + 3310875s
+281250

The input is a unit step. Then the output's
Walsh coefficient vector can be obtained from
eqn.(20), snd this is used for the determinstion
of systems of order two or three.

G(s) =

(ko)

With N = 16, T = 10 sec, and weighting matrix
W =1, the following reduced models are obtained.

al(S} - 8.02125+o.2999 (41)
s™42.213s+2.545
2
6’2(5) go.oh"(hs 2+o.5887s+o.o3592 (L2)
s~ +3.988s5° +5.107s + 0.3302

In Fig. 2, a comparison is made between the step
responses of the original and reduced models.

As can be seen from the figure, the response of
G,(s) is a good approximation to reponse of the
original system over the interval [0, 10) that
was considered in the derivation of G,.(s).
Since true response does not reach stefidy state
in 10 sec, some steady state error has to be
expected, and amounts to 2.1%.

1.5
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In the next place, the poles and zero of the
original system are

zero : -0.08333
-0.09193, -2.02439+ 0,96465,
-7.6TU37 4 13.4461, -32.0752+ 38.8L49

For the application of the second method, let
the denominator polynomial of the reduced model
be 2

s”+ L4.0L8T79s + 5.02873
by retaining only the dominant complex pair.
Using Walsh spectra matching to determine the
coefficients of the numerator, for N = 16, T =
10, gives

63(8) =

poles :

-0.02874s + 0.59797
52+ 4. 048795 + 5. 02873

(43)

The comparison of the unit step responses of the

original and reduced models are shown in Fig.3.

The reduced systems show slight deterioration in
the steady state responses, but this is overcome

?y ?pplying spectra matching under constraint
33).

It is noted that the results could be improved
by increasing the size of the Walsh spectra and/
or the time interval. Also only step response
matching was examined, similar analysis could be
used to match responses to other kinds of input.

Fig.2

(i) G(s)
(11) §1(s)
(#i) Gz(s)
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
TIME (SEC) 10xx 1

Step responses of the original and reduced models
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6. CONCLUSION

Since information can be well kept under the
Walsh transformation, the new method of using
Walsh spectra matching can reserve the time-
domain characteristics of the original systems
satisfactory, and can be easily programmed on a
digital computer. Further, by using reduction
method under linear constraints, the reduced
model is stable provided the original model is
stable, and does not cause steady-state response
error.

¥
Other basis functions, particularly the Hlock~
pulse functions can be also used. There is no
difference in the philosophy, and the format of
the algorithm is the same as Walsh functions
except the operational matrix for integration.
Finally, it should be mentioned that the basic
idea can be applied to discrete systems.
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