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PREFACE

Courses in Digital Signal Processing (DSP) have been offered at the graduate
and senior level by Electrical Engineering departments for several jears. As
they require a course in linear systems as a prerequisite, many Electrical and
Computer Technology students are precluded from taking DSP as linear systems
courses are not usually offered in their programs.

This text is based upon the lectures that presented the concepts of DSP
to the Bachelor of Engineering Technology students at Rochester Institute of
Technology, and it reflects the concept that DSP shouid be presented as a
regular part of a technology program. It begins with a chapter that serves to.
introduce the reader to linear systems and to provide the background for the
DSP material of the later chapters.

This is followed by chapters that introduce sampling concepts, the represen-
tation of a discrete signal using the z transform, digital systems, and the Fast
Fourier Transform (FFT). The material on analog processing and interfacing
the analog and digital worlds was kept brief as there are many excellent texts
and articles on these topics. This allowed more space to be dedicated to the
main ideas of linear systems and DSP. An appendix on analog filters is included
to serve as a refresher or as a brief introduction. This provides the reader with
some background when analog filters are encountered in the text.



x , Preface

Due to the rapid development in the hardware used to process the digital
signals, it was decided to concentrate on some of the ICs that are available
and to present only a brief look at the devices presently in use. The large
number of journals and magazines along with the literature provided by the
manufacturers should be consulted to keep abreast of the introduction of more
powerful and faster devices.

In its present form, the text is suitable for people in Electrical Engineering
who would like an introduction to DSP. It can also be used as a primer before
reading the classical texts on the topic. In addition, the large number of people
in other areas of Engineering, Computer Science, and Computer Technology
will also find it valuable as an introductory source of information.

I would like to take this opportunity to thank the manufacturers who
allowed me to use their data sheets, the students who provided feedback on
the material of the text, and the people at Prentice-Hall whose work helped
bring this text into the world.

THOMAS YOUNG
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LINEAR SYSTEMS

The main purpose of this text is to introduce the reader to digital signal processing
(DSP); however, it is advisable to present the concepts and terminology of
linear systems first, as many of the techniques and applications of DSP require
an understanding of them. In this chapter we consider the linear system in
sufficient detail to provide the background required for later chapters.

When applied to a system, the concept of linearity allows one to use
relatively simple analytical techniques to determine the input and output
(1/0) relations of the system or its transfer- function. These techniques will
be examined from the time- and frequency-domain points of view. This begin-
ning will lead us to the concepts of convolution (filtering) and correlation, prepar-
ing us for their use in DSP. ;

An electrical system is definell as any combination of electrical components.
The system can be as simple as an RC circuit or as complex as a computer-
controlled space shuttle. Regardless of a system’s actual composition, we will
assume that the relationship between its output and input signal is linear to
simplify our analysis. Figure 1-1 will be used to represent an arbitrary sys-
tem.

As the first step in establishing the concept of linearity, the definition of
a function is presented. This will be useful as the values assumed by the input
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{tnput) o——i System | ———0 (Qutput)  Figure 1-1 Block representation of an ar-
bitrary system.

and output signals of the system are determined by their functiona! relationships
with time and frequency.

1.1 DEFINITION OF A FUNCTION

A function is defined when the following three items are provided: (1) a collection
(set) of numbers, real or complex, called the domainz(2) a second set of numbers,
also real or complex, calicd the range; and (3) a rule that relates the numbers
in the range tc numbers in the domain.

1.1.1 Domain

In electronics, the domains of interest usually consist of time or frequency
values. Once a domain is decided upon (e.g., time), we can arbitrarily select
any one of its members. As the values in the domain are chosen at our conve-
nience, the domain is termed the independent variable.

In specifying a domain, maximum and minimum values are indicated
which form the upper and lower limits of the domain. If all numerical values
between the limits, possibly including them, are elements of the domain, it is
termed continuous; if only a finite number of values are allowed, the domain
is discrete. As an example, if all values of time between, and including, the
limits of 0 and 10 seconds form the domain, it is continuous; if only integer
values of time (e.g., 0s, s, 2s, . . . , 10s) form the domain, it is discrete.

If either or both of the limits of the domain are infinity, the domain,
whether discrete or continuous, is said to be infinite. As an example, it is
possible to consider all values of frequency from — to +% as the domain,
making it continuous and infinite in extent. Had we chosen a discrete set of
frequency values as our domain, it would be discrete and infinite in extent.
When reprasenting functions in two- or three-dimensional graphs, the domain
is the abscissa.

1.1.2 Range

The range asually consists of a collection of real or complex numbers
that represent either voltage, current, power, the amplitude of a frequency com-
ponent. or 4 phase-shift angle. As with the domain, the range can be continuous
(all values allowed) or discrete (a finite amount of values allowed), finite or
infinite in extent.  As the numbers that form the range are determined by the
choice of clements in the domain, the former are termed dependent variables.
Even though a depandency exists between the values of the elements of a domain
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and its range, the range can be continuous or discrete, independent of the domain:
a continuous domain, time, may give rise to either a continuous or a discrete
range. Examples of this are the voltage ouiput of a sine wave generator (continu-
ous domain-continuous range) cor the voltage of a digital signal {continuous
domain-discrete range). A discrete domain may also give rise to either 2 continu-
ous or a discrete range, as with the amplitudes of frequency componenis obtained
by a Fourier analysis (discrete domain-continuous range) or the output of an
analog-to-digital converter (ADC) (discrete domain-discrete range) in which
the output leveis can assume only discrete values at discrete sampling times.
These relationships are displayed in Figures 1-2 and 1-3. In a graphicai repre-
sentation of the range, it is termed the ordinate.

1.1.3 Rule

The rule that states how to relate numbers in the domain (e.g., e, I,
or frequency, f) with numbers in the range (e.g., voltage, v, power, p, ot speciral
component amplitude) completes the definition of a function. As an cxample,
consider the voltage function, v = v(-), where - represents an arbitrary sex of
numbers forming the domain of interest, v represents the set of nurnhers forming
the range, and v(*) represents the rule that specifies the way to refate values
in the domain (1 or f) to those of the range {(c.g.. v). Another naue for the
term ins‘de the parentheses is the argument.

Choosing the time domain and szlecting an element, ¢4, ihe rule wili identify
a particular value of the range, v, associated with #;. This is shown in Equation
1-1.

v(")=10sin 2mf- (1-1a)
v=2v(1)=10sin2nft (1-1b)
vy = vt} = 1G sin Zarft (i-1c)

where Equation 1-1a specifies the rule, Equation 1-1b indicates the range and
domain, and Equation 1-lc identifies ilg two numbers, v; and ¢,, that are
related by the rule. For any value of ¢ {nosiinuous and infinite & 1ain), the
values the voltags can assume are u:nited i values berweer ard including
10 and ~10 V {continucus and finiie ravge). What mathematicons call a

Cont ~z — - Tom

Figure 1-2 Representation of the (o ~ ]
main/vange relaticuship. Oise - SN Disc
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v = v(t) = 10 sin 2rft
10 |-
Vv, -
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(d)

Figure 1-3 Graphical representation of 2 function; (a) continuous domain, continu-
ous range; (b) continuous domain, discrete range; (c) discrete domain, continuous
range; (d) discrete domain, discrete range.
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Rufe: v(.}

Dotnain: t Range: v

Figure 1-4 Pictorial representation of a time function.

function, we in tHe area of electronics call a signal: a voltage or current whose
value (thytange) can be measured or observed at different times (the domain).
We wilk'use the terms signal and function interchangably. A signal whose
domain and range are continuous is termed analog.

In order to have our results relate to practical experience, the functions
we will use in this text are absolutely integrable [i.e., the integral of the function’s
- magnitude over all time must be finite]. This is expressed in Equation 1-2.

f ROl dt < M <o (1-2)

where | | indicates magnitude and M is a finite constant. If the function repre-
sents voltage or current, this is another way of stating that the signal contains
a finite amount of energy. Figures 1-3, 1-4, and 1-5 are graphical and pictorial
representations of a function. ’

1.1.4 implicit Function

If the domain of a given function is itself the range of another function,
an implicit relationship exists between the functions. This occurs, for example,
when we specify the-domain in radians, o, in the function v = v(@). ® is
also the range for the function @ = w(f) = 2wf. This yields the implicit
function ¥ = v(w(f)) = v'(f). Either by specifying f = f; for v'(f) or 0 =
w; for v(w), we will obtain » = v,. This is shown pictorially in Figure 1-6.

Rule: V{-)

Domain: f Range: V

Figure 1-5 Pictorial representation of a frequency function.
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-)-w.,.m_m_‘

Vi L \\y Range: V

/ V(o)

Domain/range: w

Comain: €

Figure 1-& Pictorial representation of an implicit function.

By the foregoing definition of a function, v(w) 5* v'(f); however, as the
arguments are functionally related [0 = «{f) in this situation] and they have
the sanie range, we will consider t{w) and v'(f) as being equivalent: v(w)
& v'(f). From a graphicst point of view, this implies that we are using a
different abscissa to display the function.

Example i~1

Represent the magnitude of the frequency comiponents of a periodic signal (e.g., a square
wave) using radians (w) angd hertz {f).

Solution This is given in Figure 1-7, where | G| has been ploited against both domains,
w and f = w/2m.

In Example 1-1, both domains were discrete, while the range was continuous.
When dealing with implicit finctions, we will make use of their equivalency
in choosing a domain that will provide a different quantity of information.

G ‘L
?
]
1
%
% i
i
|
L i L —— i H
& RS By @ F N
e : i — t _—
By G ¥ C i 3 5t RN

figure -7 Solution t3 Example i-1.



Sec. 1.2 Linearity
1.2 LINEARITY

Linearity can be defined using the arithmetical concepts of addition and multipli-
cation as applied to functions.

1.2.1 Addition

Given a system with an input that consists of a sum of signals, if the
system is linear, its output is obtained by summing the individual outputs for
each of the input signals. This can be shown by considering the following.
Given two systein inputs, x,(z), and x»(¢), that produce the outpits y,(f) and
ya(t), respectively, (x;(1) — y;(1)), an input x(¢) = x,(¢) + x2(t) will produce
an output (1) = y;{#) -+ ps(1). This is shown in Figure 1-8. For N inputs,
we can generalize the definition of linearity as in Equation 1-3.

N N
gl xi()=x(t) — y)= ;} yi(?) (1-3)

where yi(1) is the output due to the input x; ().

Example 1-2

x1(1) = 31 + 2 and xp(¢) = 2 — t/2. If a iinear system produces y,(¢) = {t/4) — 1|
and jy(t) = t for the inputs above, what is the system output if its input is x(f} =
xi(t) Foxa(t) =3t +2)+ Q ~ /20

Solution Using Equation 1-3, we have

Y() = yi(2) + ya2) (1-3)
t
= (z - l) +t
5¢
=Z -1

1.2.2 Multiplication

¥ a system is linear, multiplying s input by a (complex) constant will
cause the cutput to be multiplied by the same constant. If an input signal

i

- . l—-——o yit) =y, () +y,t2)

Figure 1-8 Representation of a linear system: addition.
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x(t) produces an output y(r), then cx(r) applied at the input will produce the
output cy(t), where ¢ can be real or complex. This is given in Equation 1-4
for N inputs, each multiplied by a (possibly) different constant, ¢;.

N
ﬁ () =x(t) — y@O)= 3 ()

i=1 j=1

(1-4)

where yi(t) is the output due to x;(7) and ¢; may be real or complex. In
this text we assume that all systems discussed are linear.

1.3 TIME INVARIANCE

If the components that form the system are constant in value (i.e., they do
not change with time) the system is said to be time invariant. To define time
invariance mathematically, we introduce the time-shifted, or time-delayed func-
tion. If s(t) is a given function, then a time-delayed version of this function is
s(t — 1), where 7 is the amount of the delay. This is shown in Figure 1-9.

The effect of changing the domain (argument) from ¢ to t — 7 is to
shift the graphical representation of the function to the right on the time axis
for values of 7 > 0. This can be stated as follows: The time-shifted function
will provide the same set of values (range) for s(t — 7) as s(¢); that is, their
ranges are identical when their arguments assume the same value. This is
shown in Equation 1-5, which is the functional form of the waveform in Figure
1-9.

(2V T,
— () 0<-<—
Tl() )
. =* — —
SO=122V y4ov, Dooor, (1-32)
T, 2
0, otherwise
2V T,
— 1, 0<t<—
(Tl . 2
SOW=122Y, ,ov, Digicr (1-5b)
T, 2
0, otherwise
2V T,
—(t—1), <t—71<—
Tl( 7) 0 T >
st—7m)=< 2V T, {-s
( ) Tl (t—-'r)+2V, "ilst"‘TST] ( C)

0;

otherwise
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s(t), V s(t—1),V
1 1 /\
T, t V T T+ T, t
(a) (b)

Figure 1-9 A signal and its time delayed form.

Equation 1-5b is the nonshifted waveform (Figure 1-92) and Equation 1-5¢
is the time-shifted waveform (Figure 1-9b). Equation 1-5c is obtained from
Equation 1-5a by replacing () with (¢ — 7), where 7 is a parameter [i.e., a
“constant” variable], that indicates the amount of the shift or delay. For negatjve
values of 7, the shift would be to the left, representing an advanced signal.
To observe the values of ¢ for which s(r — 7) has a nonzero value, we add
to both sides of the inequality in Equation 1-5c to obtain Equation 1-5d.

\'
3*--(t-r), TSIS%""?

T, .
t— = -2V 1-
st =) 22V (t—7), »T'*'I!SIST;'FT (1-59)
T, 2
0, otherwise

The effect of time invariance on a linear system can be stated as follows:
If an input signal s(f) produces an output y(¢), a time-invariant (TI) system
will produce y(¢ — 7) if the input is s( — 7). This is shown in Figure 1-10.
For a time-invariant system, there is no change in the shape of the output

s(t), V y(t), vV
1 —
0.5
T t e T, t
N
s{it -7}, V . ylt—-7}, VvV
1 _—
0.5
T T+T, ot 7 7+ T, t

Figure 1~10 Effect of time invariance on system output.



