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Preface

Distribut: o theory was one of the two great revolutions in mathemati-
cal analy..s in the 20th century. It can be thought of as the completion
of differential calculus, just as the other great revolution, measure theory,
{or Lebesgue integration theory), can be thought of as the completion of
integral calculus. There are many parallels between the two revolutions.
Both were created by young, highly individualistic French mathematicians
{Henri Lebesgue and Laurent Schwartz). Both were rapidly assimilated by
the mathematical community, and opened up new worlds of mathematical
developmert. Both forced a complete rethinking of all mathematical anal-
ysis that had come before, and basically altered the nature of the questions
that mathematical analysts asked. (This i the reason I feel justified in us-
ing the word “revolution” to describe them). But there are also differences.
When Lebesgue introduced measure theory (circa 1903), it almost came like
a bolt from the blue. Although the older integration theory of Riemann was
incomplete—there were many functions that did not have integrals—it was
almost impossible to detect this incompleteness from within, because the
non-integrable functions really appeared to have no well defined integral.
As evidence that the mathematical community fzlt perfectly comfortable
with Riemann’s integration theory, one can look at Hilbert’s famous list
{dating to 1900) of 23 unsolved problems that he thought would shape the
direction of mathematical research in the 20th century. Nowhere is there
a hint that completing integration theory was a worthwhile goal. On the
other hand, a number of his problems do foreshadow the developments that
led to distribution theory (circa 1945). When Laurent Schwartz came out
with his theory, he addressed problems that were of current interest, and he
was able to replace a number of mere complicated theories that had been
developed earlier in an attempt to deal with the same issues.

From the point of view of this work, the most important difference is that
in retrospect, measure theory still looks hard, but distribution theory looks
easy. Because it is relatively easy, distribution theory should be accessible to
a wide audience, including users of mathematics and mathematicians who
specialize in other fields. The techniques of distribution theory can be used,
confidently and effectively-—just like the techniques of calculus are used—
without a complete knowledge of the formal mathematical foundations of
the subject. The aim of this book is thus very similar to the aim of a typical
calculus textbook: to explain the techniques of the theory with precision,
to provide an intuitive discussion of the ideas that underline the techniques,



vi Preface

and to offer a selection of problems applying the techniques.

Because the Lebesgue theory of integration preceded distribution theory
historically, and is required for the rigorous mathematical development of
the theory, it might be thought that a knowledge of the Lebesgue theory
would have to be a prerequisite for studying distribution theory. I do not
believe that this is true, and I hope this book makes a good case for my
point of view. When you see an integral sign in this book, you are free to
interpret it in the sense of any integration theory you have learned. If you
have studied the Lebesgue theory in any form, then of course think of the
integrals as Lebesgue integrals. But if not, don't worry about it. Let the
integral mean what you think it means.

Distribution theory is a powerful tool, but it becomes an even more pow-
erful tool when it works in conjunction with the theory of Fourier trans-
forms. One of the main areas of applications is to the theory of partial
differential equations. These three theories form the main themes of this
book. The first two chapters motivate and introduce the basic concepts
and computational techniques of distribution theory. Chapters three and
four do the same for Fourier transforms. Chapter five gives some important
and substantial applications to particular partial differential equations that
arise in mathematical physics. These five chapters, part I of the book, were
written with the goal of getting to the point as quickly as possible. They
have been used as a text for a portion of a course in applied mathematics
at Cornell University for more than 10 years.

The last three chapters, part II of the book, return to the three themes
in greater detail, filling in topics that were left aside in the rapid devel-
opment of part I, but which are of great interest in and of themselves,
and point toward further applications. Chapter six returns to distribu-
tion theory, explaining the notion of continuity, and giving the important
structure theorems. Chapter seven covers Fourier analysis. In addition
to standard material, I have included some topics of recent origin, such
as quasicrystals and wavelets. Finally, Chapter eight returns to partial
differential equations, giving an introduction to the modern theory of gen-
eral linear equations. Here the reader will meet Sobolev spaces, a priori
estimates, equations of elliptic and hyperbolic type, pseudodifferential op-
erators, wave front sets, and the ideology known as microlocal analysis.
Part II was written for this book, and deals with somewhat more abstract
material. It was not designed for use as a textbook, but more to satisfy
the curiosity of those readers of part I who want to learn in greater depth
about the material. T also hope it will serve as an appetizer for readers who
will go on to study these topics in greater detail.

The prerequisites for reading this book are multidimensional calculus
and an introduction to complex analysis. A reader who has not seen any



Preface vii

complex analysis will be able to get something out of this book, but will have
to accept that there will be a few mystifying passages. A solid background
in multi-dimensional calculus is essential, however, especially in part II.

Recently, when I was shopping at one of my favorite markets, I met a
graduate of Cornell (who had not been in any of my courses). He asked
me what I was doing, and when I said 1 was writing this book, he asked
sarcastically “do you guys enjoy writing them as much as we enjoy reading
them?” [ don't know what other books he had in mind, but in this case
I can say quite honestly that I very much enjoyed writing it. I hope you
enjoy reading it.

Acknowledgments:

I am grateful to John Hubbard, Steve Krantz and Wayne Yuhasz for en-
couraging me to write this book, and to June Meyermann for the excellent
job of typesetting the book in I¥TEX.

Ithaca, NY
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Chapter 1

What are Distributions?

1.1 Generalized functions and test functions

You have often been asked to consider a function f(z) as representing the
value of a physical variable at a particular point z in space (or space-
time). But is this a realistic thing to do? Let us borrow a perspective from
quantum theory and ask: What can you measure?

Suppose that f(z) represents temperature at a point z in a room (or
if you prefer let f(x,t} be temperature at point x and time £.) You can
measure temperature with a thermometer, placing the bulb of the ther-
mometer at the point z. Unlike the point, the bulb of the thermometer has
a nonzero size, so what you measure is more an average temperature over
a small region of space (again if you think of temperature as varying with
time also, then you are also averaging over a small time interval preceed-
ing the time ¢ when you actually read the thermometer). Now there is no
reason to believe that the average is “fair” or “unbiased.” In mathematical
terms, a thermometer measures

/ F@)o(a) de

where ¢ (x} depends on the nature of the thermometer and where you place
it—(x) will tend to be “concentrated” near the location of the thermome-
ter bulb and will be nearly zero once you are sufficiently far away from the
bulb. To say this is an “average” is to require

w(x) = 0 everywhere, and
/ @(x)dx =1 (the integral is taken over all space).

1



2 1 What are Distributions?

However, do not let these conditions distract you. With two thermometers
you can measure

f f@a@ds ad [ e

and by subtracting you can deduce the value of [ f(x)[w1(z) — w2(z)] dz.
Note that 1 (x) —2(z} is no longer nonnegative. By doing more arithmetic
you can even compute [ f(x)(ayp1(z) = azp2(z)) dx for constants a; and
az, and a;p3(x) — azws(x) may have any finite value for its integral.

The above discussion is meant to convince you that it is often more
meaningful physically to discuss quantities like [ f(z)y(r)dz than the value
of f at a particular point . The secret of successful mathematics is to elim-
inate all unnecessary and irrelevant information—a mathematician would
not ask what color is the thermormeter (neither would an engineer, I hope).
Since we have decided that the value of f at x is essentially impossible
to measure, let's stop requiring our functions to have a value at x. That
means we are considering a larger class of objects. Call them generalized
Junctions. What we will require of a generalized function is that something
akin to [ f(z)w(z)dz exist for a suitable choice of averaging functions i
(call them test functinns). Let’s write {f,) for this something. It should
be a real number (or a complex number if we wish to consider complex-
valued test functions and generalized functions}. What other properties do
we want? Let’s recall some arithmetic we did before, namely

anff(z)cm(z) dr—ﬂz/f(r)w(r)dz = ff(«’f)(ﬂlw(I) — agpa(z)) dzr.

We want to be able to do the same sort of thing with generalized functions,
so we should require a;{f,¢1) —az(f,v2) = {f, @191 —aaw2). This property
is called linearity. The minus sign is a bit silly, since we can get rid of it by
replacing az by —az. Doing this we obtain the condition

ar(f 1) + az{fip2) = (fiarer — axps).

Notice we have tacitly assumed that if w2 are test functions then a;¢; +
azipz is also a test function. I hope these conditions look familiar to you—if
not, please read the introductory chapter of any book on linear algebra.
You have almost seen the entire definition of generalized functions. All
you are lacking is a description of what constitutes a test function and one
technical hypothesis of continuity. Do not worry about continuity—it will
always be satistied by anything you can construct (wise-guys who like using
the axiom of choice will have to worry about it, along with wolves under

the bed, etc).



1.1 Generalized Functions and Test Functions 3

So, now, what are the test functions? There are actually many possible
choices for the collection of test functions, leading to many different theories
of generalized functions. I will describe the space called D, leading to the
theory of distributions. Later we will meet other spaces of test functions.

The underlying point set will be an n-variable space R® (points z stand
for x = (zy,...,z,)) or even a subset 2 C B™ that is open. Recall that this
means every point = € £} is surrounded by a ball {y : |z - y| < €} contained
in €2, where ¢ depends on z, and

[z =yl = V{E1 —y)? + - + (Tn — yn)?).

Of course £ = R" is open, as is every open ball {y : |t —y| < r}. Intuitively,
an open set is just a union of open balls.

The class of test functions D(§}) consists of all functions ¢(z) defined
in , vanishing outside a bounded subset of Q! that stays away from the
boundary of §}, and such that all partial derivatives of all orders of ¢ are
continuous.

For example, if n = 1,2 = {0 <z < 1}, then

isin D
isnotin [
0 1
/\ i} isnotin D
4] 1

Figure 1.1

The second example fails because it does not vanish near the boundary
point 0, and the third example fails because it is not differentiable at three
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points. To actually write down a formula for a function in D is more
difficult. Notice that no analytic function (other than = 0) can be in
D because of the vanishing requirement. Thus any formula for i must be
given “in pieces.” For example, in R!

eV z >0

‘”("Jz{o <0

has continuous derivatives of all order:

d\* : I ial in z 2
4\ ~1/z* _ polynomia o-1/a
dx polynomial in =

and as = — 0 this approaches zero since the zero of e=1/%" beats out the
pole of b Thus ¢(z) = ¥(x)y(1 - ) has continuous derivatives
of all orders (we abbreviate this by saying y is C°) and vanishes outside
0 <z <150 e DR in fact, ¢ € D(a < x < b) provided a < 0 and
b > 1 (why not @ < 0 and & > 17). Once you have one example you can
manufacture more by

1. moving it about @(z + )

2. changing vertical scale a@(x)

3. changing horizontal scale ¢(azx)

4. taking linear combinations a1, () + agwq(z) if 1,2 € D.

5. taking products ¢y {x1,...,Ts) = w(x1)w(ze) .. w{z,) to obtain ex-
amples in higher dimensions.

Exercise: Draw the pictures associated with operations 1-4.

These considerations should convince you that you can make a test
function in D do anything you can draw a picture of a smooth function
doing. You can make it take on prescribed values at a finite set of points,
make it vanish on any open set and even take on a constant value (say 1)
on a bounded open set away from the boundary (this requires a little more
work).

O.K. That is what D(f2) is. We can now define the class of distributions
on £, denoted D'(Q2), to be all continuous linear functionals on D). By
functional I mean a real (or complex) -valued function on D(Y), written
{f. ). By linear I mean it satisfies the identity

ar{f, 1) + az(f, 2} = {f,a1p1 + azya).
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(Yes, Virginia, ayp; + azipg is in D(Q) if ¢, and o are in D(Q).) By
continuous I mean that if ¢, is close enough to y then {f,i,) is close to
{f,p)—the exact definition can wait until later. Continuity has an intuitive
physical interpretation—you want to be sure that different thermometers
give approximately the same reading provided you control the manufactur-
ing process adequately. Put another way, when you repeat an experiment
you do not want to get a different answer because small experimental er-
rors get magnified. Now, whereas discontinuous functions abound, finear
functionals all tend to be continuous. This happy fact deserves a bit of
explanation. Fix ¢ and ¢; and call the difference ¢; — ¢ = 3. Then
w1 = @ + o Now perhaps {f,y) and (f,) are far apart. So what?
Move ¢, closer to ¢ by considering ¢ + ti2 and let ¢ get small. Then
(fie + tyw2) = (f, @) +t{f,@2) by linearity, and as ¢ gets small this gets
close to {f,). This does not constitute a proof of continuity, since the
definition requires more *uniformity,” but it should indicate that a certain
amount of continuity is built into linearity. At any rate, all linear function-
als on () you will ever encounter will be continuous.

1.2 Examples of distributions

Now for some examples. Any function gives rise to a distribution by setting
(frw) = f f(z)p(x)dz, at least if the integral can be defined. This is
certainly true if f is continuous, but actually more general functions will
work. Depending on what theory of integration you are using, you may
meke f discontinuous and even unbounded, provided the improper integral
converges absolufely. For instance flzl <, |~ dz converges for t < n (in
n dimensions) and diverges for ¢t > n. Thus the function jr|~¢ for ¢ < n
gives rise to the distribution in D'(R™)(f,) = [4.. w(z}|x| ™! dx (the actual
range of integration is bounded since  vanishes outside a bounded set).
A different sort of example is the Dirac é-function: (4, ) = (0). In this
case we have to check the linearity property, but it is trivial to verify:

a1(6,01) + a2(d,w2) = a1w1(0) + a2g2(0) = (5, aypy + agypz).
An even wilder example is 4’ (now in D'(R!)) given by (&,¢) = —'(0).
Exercise: Verify linearity.
These examples demand a closer look, some pictures, and an explanation

of the minus sign. Consider any function fi(z) (for simplicity we work in
one dimension) that satisfies the conditions

L fr(z) =0 unless |z| < §
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2. [10, fulz)dz = 1.

The simplest examples are

k
k2
_ K2
or
—1tk 0 1k —1/k 1k
Figure 1.2

but we may want to take fi smoother, even in D

ik 1k

Figure 1.3

Now the distribution
(e = [ feaota) da

is an average of ¢ near zero, so that if p does not vary much in —1/k <
r < 1/k, it is close to (0). Certainly in the limit as k — oo we get
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{fe,0) — ©(0) = (4, ). Thus we may think of d as limy_ fi. (Of course,
pointwise

, [0 i z#0
kl_]..n;n filz) = { +oo if =0

for suitable choice of fi, but this is nonsense, showing the futility of point-

wise thinking.)
Now suppose we first differentiate fi and then let & — oo?

Iff;( is thﬁl‘l_,‘;’ 15

=1/k 11k

Figure 1.4

and

) N A S
{f;.w)zw( Zk])-;k"g('zk)

(the points —51; and # are the midpoints of the intervals and the factor
(1/k)~! = k is the area) which approaches —¢'(0) as k — co. We obtain
the same answer formally by integrating by parts:

[fi(z)ﬁ’(x}dm = ffk(x)w'(z)dr = —(fi.¥) = ~¢'(0)

as k — oc. Here we might assume that fi is continuously differentiable.
Note that there are no boundary terms in the integration-by-parts formula
because ¢ vanishes for large values of x. Thus if fi — 4 then fi — &,
which justifies the notation of 4’ as the derivative of 4.
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1.3 What good are distributions?

Enough examples for now. We will have more later. Let us pause to
consider the following question: Why this particular (perhaps peculiar)
choice of test functions D? The answer is not easy. In fact, the theory
of generalized functions was in use for almost twenty years before Laurent
Schwartz proposed the definition of D. So it is not possible to use physical
or intuitive grounds to say D is the only “natural” class of test functions.
However, it does yield an elegant and useful theory—so that after the fact
we may thank Laurant Schwartz for his brilliant insight. You can get some
feel for what is going on if you observe that the smoother you require the
test functions « to be, the “rougher” you can allow the generalized functions
f to be. To define (4, 0}, v must be at least continuous, and ta define {¢#', ),
you must require g to be differentiable. Later I will show you how to define
derivatives for any distribution—the key point in the definition will be the
ability to differentiate the test functions.

The requirement that test functions in ‘D vanish outside a hounded set
and near the boundary of € is less crucial. It allows distributions to “grow
arbitrarily rapidly” as you approach the boundary (or infinity). Later we
will consider a smaller class of distributions, called tempered distributions,
which cannot grow as rapidly at infinity, by considering a larger class of
test functions that have weaker vanishing properties.

Another question you should be asking at this point is: What good are
distributions? Let me give a hint of one answer. Differential equations are
used to construct models of reality. Sometimes the reality we are model-
ing suggests that some solutions of the differential equation need not be
differentiable! For example, the “vibrating string” equation

dulz,t) T u(x,t)
ot ar?

has a solution u(x,t) = f(x — kt) for any function of one variable f, which
has the physical interpretation of a “traveling wave” with “shape” f(z)
moving at velocity k.

There is no physical reason for the “shape” to be differentiable, but if it
is not, the differential equation is not satisfied at some points. But we do
not want to throw away physically meaningful solutions because of techni-
calities. You might be tempted therefore to think that if a function satisfies
a differential equation except for some points where it is not differentiable,
it should be admitted as a solution. The next example shows that such a
simplistic idea does not work.

Laplace’s equation Au = 0 where A (called the Laplacian and some-



