
Coenzyme Q

BIOCHEMISTRY, BIOENERGETICS and CLINICAL APPLICATIONS of UBIQUINONE

edited by G.LENAZ

Coenzyme Q

Biochemistry, Bioenergetics and Clinical Applications of Ubiquinone

Edited by
G. Lenaz
Istituto ed Orto Botanico,
University of Bologna,
Bologna, Italy

A Wiley Interscience Publication

JOHN WILEY & SONS

Chichester · New York · Brisbane · Toronto · Singapore

Copyright © 1985 by John Wiley & Sons Ltd.

All rights reserved.

No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the publisher

Library of Congress Cataloging in Publication Data:

Main entry under title:

Coenzyme Q

'A Wiley-Interscience publication.'

Includes index.

1. Ubiquinones. 2. Ubiquinones—Therapeutic use.

I. Lenaz, Giorgio. [DNLM: 1. Ubiquinone. QU 135 C672] QP801.U2C464 1985 615'.35 84-15355

ISBN 0 471 10286 5

British Library Cataloguing in Publication Data:

Coenzyme Q.

Quinone

I. Lenaz G.

574.19'121 QP801.Q5

ISBN 0 471 10286 5

Typeset by Spire Print Services, Salisbury, Wiltshire Printed in Great Britain by St Edmundsbury Press, Bury St Edmunds, Suffolk

List of Contributors

R. BARR	Department of Biological Sciences, Purdue
	University, West Lafayette Indiana 47907, USA
D. S. BEATTIE	Department of Biochemistry, Mount Sinai School
	of Medicine of the City University of New York,
	New York, NY 10029, USA
E. A. BERRY	Department of Biochemistry, Dartmouth Medical
	School, Hanover, New Hampshire 03756, USA
E. BERTOLI	Institute of Biochemistry, University of Ancona,
	60100, Ancona, Italy
J. R. BOWYER	Department of Biochemistry, Royal Holloway
	College, Egham Hill, Egham, Surrey TW20 0EX,
	UK
F. L. CRANE	Department of Biological Sciences, Purdue
	University, West Lafayette, Indiana 47907, USA
A. DE SANTIS	Institute of Botany, University of Bologna, Via
	Irnerio 42, 40126, Bologna, Italy
M. DEGLI ESPOSTI	Institute of Botany, University of Bologna, Via
	Irnerio 42, 40126, Bologna, Italy
K. FOLKERS	Institute for Biomedical Research, The University
	of Texas at Austin, Austin, Texas 78712, USA
M. GUTMAN	Department of Biochemistry, Tel Aviv University,
	Tel Aviv, Israel
C. R. HACKENBROCK	Laboratories for Cell Biology, Department of
	Anatomy, School of Medicine, University of North
	Carolina at Chapel Hill, North Carolina 27514,
	USA
S. H. K. HO	Department of Physiological Chemistry, Ohio
	State University, Columbus, Ohio 43210, USA
H. KATSIKAS	Department of Biochemistry, Chelsea College,
	University of London, London, SW3 6LX, UK
T. E. KING	Department of Chemistry and Laboratory of
	Bioenergetics, State University of New York at
	Albany, New York 12222, USA
	··· · · · · · · · · · · · · · · · · ·

A11	List of Communions
A. KRÖGER	FB Biologie/Mikrobiologie, Lahnberge, D3550 Marburg/Lahn, FRG
J. J. LEMASTERS	Laboratories for Cell Biology, Department of Anatomy, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
G. LENAZ	Institute of Botany, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
B. A. MELANDRI	Institute of Botany, University of Bologna, via Irnerio 42, 40126 Bologna, Italy
P. MITCHELL	Glynn Research Institute, Bodmin, Cornwall PL30 4AU, UK
J. MOYLE	Glynn Research Institute, Bodmin, Cornwall PL30 4AU, UK
T. OHNISHI	Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
T. OZAWA	Department of Biomedical Chemistry, University of Nagoya, Nagoya, Japan
P. J. QUINN	Department of Biochemistry, Chelsea College University of London, London SW3 6LX, UK
C. I. RAGAN	Department of Biochemistry, University of Southampton, Bassett Crescent East, Southampton SO9 3TU, UK
T. RAMASARMA	Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
J. S. RIESKE	Department of Physiological Chemistry, Ohio State University, Columbus, Ohio 43210, USA
H. SCHNEIDER	Xyrofin AG, Clarastrasse 12, CH-4005 Basel, Switzerland
A. SIDHU	Department of Biochemistry, Mount Sinai School of Medicine of the City University of New York, New York, NY 10029, USA
A. TREBST	Department of Biology, Ruhr-Universität Bochum, FRG
B. L. TRUMPOWER	Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03756, USA
G. UNDEN	FB Biologie/Mikrobiologie, Lahnberge, D3550 Marburg/Lahn, FRG
Y. YAMAMURA D. ZANNONI	Osaka University, Osaka, Japan Institute of Botany, University of Bologna, via Irnerio 42, 40126 Bologna, Italy

Contents

List of Contributors	ix
PART 1 PHYSICOCHEMICAL PROPERTIES AND BIOCHEMISTRY OF UBIQUINONES	
I Chemical Structure and Properties of Coenzyme Q and Related Compounds	1
II The Isolation and Characterization of Coenzyme Q and Related Compounds	39
III Natural Occurrence and Distribution of Coenzyme Q T. Ramasarma	67
IV Physical Properties of Ubiquinones in Model Systems and Membranes	83
V Thermal Characteristics of Coenzyme Q and Its Interaction with Model Membrane Systems	107
VI Metabolism of Coenzyme Q	131
PART II FUNCTIONS OF QUINONES IN BIOENERGET	ICS
VII The role of Ubiquinone and Plastoquinone in Chemiosmotic Coupling Between Electron Transfer and Proton Translocation P. Mitchell and J. Moyle	145

viii Contents

VIII	A Survey of the Function and Specificity of Ubiquinone in the Mitochondrial Respiratory Chain	165
IX	Membrane Fluidity and Mobility of Ubiquinone	201
X	Kinetic Analysis of Electron Flux Through the Quinones in the Mitochondrial System	215
XI	Function of Ubiquinone in Bacteria D. Zannoni and B. A. Melandri	235
XII	Plastoquinone in Photosynthetic Electron Flow in Chloroplasts A. Trebst	257
XIII	The Function of Menaquinone in Bacterial Electron Transport A. Kröger and G. Unden	285
XIV	Coenzyme Q Mutants of Yeast A. Sidhu and D. S. Beattie	301
XV	Structure and Function of Respiratory Complex I	315
XVI	Respiratory Complex III: Structure-Function Relationships J. S. Rieske and S. H. K. Ho	337
XVII	Pathways of Electrons and Protons Through the Cytochrome bc_1 Complex of the Mitochondrial Respiratory Chain E. A. Berry and B. L. Trumpower	365
XVIII	Ubiquinone Proteins	391
XIX	EPR Spectroscopy in the Study of Ubisemiquinone in Redox Chains	409
	PART III BIOMEDICAL AND CLINICAL ASPECTS OF COENZYME Q	
XX	A Biochemical Rationale for the Therapeutic Effects of Coenzyme Q	435

Contents ix

XXI	Formation of Oxygen Radicals in the Electron Transfer Chain and Antioxidant Properties of Coenzyme Q T. Ozawa	441
XXII	Basic Chemical Research on Coenzyme Q ₁₀ and Integrated Clinical Research on Therapy of Diseases	457
XXIII	A Survey of the Therapeutic Uses of Coenzyme Q	479
Index	***************************************	507

CHAPTER I

Chemical Structure and Properties of Coenzyme Q and Related Compounds

FREDERICK L. CRANE and RITA BARR

Purdue University, West Lafayettte, Indiana 47907, USA

INTRODUCTION	2
I. THE CHEMISTRY OF COENZYME Q HOMOLOGS	3
A. Coenzyme Q_0 to Q_{12}	-
B. Oxidation-reduction potentials	4
C. Coenzyme Q semiquinones	7
D. Chemical reactions of quinones	ç
1. Oxidation-reduction	ç
2. Reactions with amines	g
3. Reactions with sulfhydryl groups	10
	10
	10
	10
	10

CNQ, 3-ω-cyclohexyloctyl-2-hydroxy-1,4-naphthoquinone; CQQ. ω-cyclohexyloctyl-2-hydroxy-5,8-quinolinequinone; DB, 2,3-dimethoxy-5-methyl-6-decyl-1,4benzoquinone; DBMIB, 2,5-dibromo-3-methyl-6-isopropylbenzoquinone; DMPC, dimyristoylphosphatidylcholine; DPPC, dipalmitoylphosphatidylcholine; EPR/ESR, electron paramagnetic/spin resonance; H-10, dihydrocoenzyme Q₁₀; HFB, 2,3-dimethoxy-5-hydroxy-6- farnesyl-1,4-benzoquinone; HiPIP, high potential iron protein; HMHQQ, 7-(n-heptadecyl) mercapto-6-hydroxy-5,8-quinolinequinone; HPB, 2,3-dimethoxy-5-hydroxy-6-phytyl-1,4-benzoquinone; NMR, nuclear magnetic resonance; PB, 2,3-dimethoxy-5-methyl-6-pentyl-1,4-benzoquinone; PDB, 6-pentadecyl Q_3 ; $Q_0C_{10}NAPA$, methyl-6-[10-[-(4-azido-2-nitroanilino)propionoxy]decyl]-1,4-benzoquinone; Q₀C₁₀TMOPOC, 3-dimethoxy-5-methyl-6-[10- (2, 2, 5, 5-tetramethyl-3-pyrrolin-1-oxyl-3-carboxy) decyl]-1,4-benzoquinone; QP-C, Q-binding protein of bc1 complex; QP-S, Q-binding protein of succinate dehydrogenase; UHDBT,5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole.

2 Coenzyme Q

II. THE CHEMISTRY OF COENZYME Q ANALOGS	10
A. Ring substitution	10
1. Rhodoquinone	10
2. Hydroxy analogs	12
3. Ethoxy analogs	12
4. Bromine or chlorine analogs	13
B. Modifications of the isoprenoid sidechain	13
1. Prenyl sidechain cyclization	13
a. Ubichromenols	13
b. Ubichromanols	13
c. Fluorcoenzyme Q	16
2. Prenyl sidechain substitution	16
a. Bromodecylcoenzyme Q	16
Epoxycoenzyme Q	16
3. Prenyl sidechain saturation	16
a. Dihydrocoenzyme Q and others	16
b. Perhydrocoenzyme Q	17
4. cis and trans isomers	17
a. Isoubiquinones	17
C. Photoaffinity labels derived from coenzyme Q	18
D. Spin-labeled coenzyme Q derivatives	18
III. COENZYME Q ANTAGONISTS	18
A. Antagonists with structural similarities to coenzyme Q	23
B. Competitive inhibitors of coenzyme Q	26
IV. COENZYME Q METABOLITES	27
A. Biosynthetic precursors of coenzyme Q	27
B. Natural coenzyme Q metabolites	27
V. PHOTOPRODUCTS OF COENZYME Q	30
VI. CHEMICAL SYNTHESIS OF COENZYME Q	30
VII. THE CHEMISTRY OF COENZYME Q ELECTRON	
TRANSFER REACTIONS	31
REFERENCES	31

INTRODUCTION

The natural coenzyme Q series¹ with its monounsaturated isoprenoid homologs from 1 to 12 isoprene units²⁻⁵ are based on the 2,3-dimethoxy-5-methylbenzoquinone nucleus (I). The chemical structure of coenzyme Q was first reported by Folkers' group.⁶ The whole series of coenzyme Q homologs was synthesized by Mayer and Isler⁷ (Fig. 1).

Aurantiogliocladin (II) is the only other naturally occurring compound that belongs to the coenzyme Q series. It is an antibiotic isolated from *Gliocladium* species by Vischer.⁸

$$CH_{3}O$$
 CH_{3}
 $CH_{3}O$
 CH_{3}
 $CH_{2}-CH=C-CH_{2}$
 $I_{n}H$

I. Coenzyme Q (n = 1-12)

II. Aurantiogliocladin

FIGURE 1

The most important aspects of coenzyme Q chemistry in relation to function are the redox properties of the quinone group and the physical properties of the isoprenoid sidechains. All aspects of the coenzyme Q structure have been modified by synthesis, while some modified coenzyme Q analogs such as the epoxyubiquinone series⁹ and rhodoquinone¹⁰ occur in nature.

The chemistry and synthesis of coenzyme Q homologs have been reviewed by Mayer and Isler, biosynthesis in bacteria by Gibson and Young, in animals by Winrow and Rudney. The synthesis of some modified coenzyme Q analogs has been described by Wan and Folkers, the synthesis of photoaffinity and spin labels by Yu and Yu.

I. THE CHEMISTRY OF COENZYME Q HOMOLOGS

A. Coenzyme Q_0 to Q_{12}

As shown in I, the coenzyme Q series encompasses the 2,3-dimethoxy-5-methyl-6-polyprenylbenzoquinone nucleus with sidechains containing 1–12 isoprenoid units. For isolation of various coenzyme Q homologs from natural sources see refs. 15–19 and also Chapter II of this volume.

The synthesis of various ubiquinones is reported by Mayer and Isler,⁷ and biosynthesis by Threlfall¹⁵ and Bentley and Campbell.¹⁶

Coenzyme Q homologs 1–12 are soluble in most organic solvents but not in water due to their long isoprenoid sidechains. Only homologs 6–12 can be obtained in crystalline form at room temperature (Table 1).

Compound	Melting point (°C)	Reference
Coenzyme Q ₅	20	Ramasarma ¹⁹
Coenzyme Q ₆	19–20	Ramasarma 19
Coenzyme Q ₇	31–32	Ramasarma 19
Coenzyme Q ₈	37–38	Ramasarma ¹⁹
Coenzyme Q ₉	4445	Ramasarma ¹⁹
Coenzyme Q ₁₀	49	Ramasarma ¹⁹
Demethylubiquinone ₇	38	Imada et al. 152
Ethoxycoenzyme Q ₁₀	43-43.5	Linn et al. 48
Diethoxycoenzyme \hat{Q}_{10}	34.5-35.5	Linn et al. 48
Dihydrocoenzyme Q ₁₀ (H–10)	28.5-29.5	Gale et al. 79
Dihydrocoenzyme Q ₁₀ (H–10)	29	Lavate et al.81
Ubichromenol	18	Laidman et al. 57
Rhodoquinone ₁₀ (natural)	69–70	Glover and Threlfall ¹⁰
Rhodoquinone ₁₀ (synthetic)	39–45	Moore and Folkers ³⁸
Rhodoquinone ₁₀	69–70	Parson and Rudney ¹⁵²
Rhodoquinone ₁₀	66.5–67	Powls and Hemming ⁴¹
Rhodoquinone ₉	66.5–67	Ozawa et al. 43

TABLE 1 The Melting Points of Coenzyme Q and Related Compounds.

The molecular weights of various coenzyme Q homologs and related compounds are shown in Table 2, their spectral properties and extinction coefficients are described in Chapter II and IV of this volume (also refs. 17–19).

B. Oxidation-reduction potentials

The oxidation-reduction potentials of the various coenzyme Q homologs are discussed by Ramasarma.¹⁹

Since redox potentials can be determined by polarography or by reductive titration, there is variation in the values reported from pure compounds and for quinones in various organelles, as shown in Table 3. The most frequently quoted midpoint potential value for isolated coenzyme Q is +104 mV to +112 mV, ¹⁰ for beef heart submitochondrial particles it is +65 mV, ²⁰ for plant mitochondria +70 mV, ²¹ and for the ubiquinone/ubiquinol couple in *Rhodopseudomonas* it is +92 mV. ²² The semiquinone forms of many substituted benzoquinones give high redox potentials, ^{23,24} especially if they are short-lived. In the case of coenzyme Q semiquinones, the redox potentials of the radical forms may be lowered to a more normal level by stabilization through binding to a corresponding apoprotein. ²⁵ Practical methods for measuring the redox states of coenzyme Q in tissues are given by Kröger. ²⁶

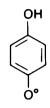
TABLE 2 The Molecular Weights of Coenzyme Q and Related Compounds.

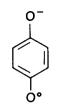
Compound	Formula	Molecular weight	Reference
Coenzyme Q ₀	$C_9H_{10}O_4$	182	Crane ¹⁵³
Coenzyme Q ₁	$C_{14}H_{13}O_4$	245	Muraca et al. 154
Coenzyme Q ₂	$C_{19}H_{22}O_4$	314	Muraca et al. 154
Coenzyme Q ₃	$C_{24}H_{31}O_4$	383	Muraca et al. 154
Coenzyme Q ₄	$C_{29}H_{40}O_4$	452	Daves et al. ³
Coenzyme Q ₅	$C_{34}H_{49}O_4$	521	Friis <i>et al</i> . 4
Coenzyme Q ₆	$C_{39}H_{58}O_4$	590	Muraca et al. 154
Coenzyme Q ₇	$C_{44}H_{67}O_{4}$	659	Muraca et al. 154
Coenzyme Q ₈	$C_{49}H_{76}O_4$	728	Muraca et al. 154
Coenzyme Q ₉	$C_{54}H_{82}O_4$	794	Olson and Dialameh 15
Coenzyme Q ₁₀	$C_{59}H_{90}O_4$	862	Muraca et al. 154
Epoxycoenzyme Q (product D)		878	Friis et al.9
6',7'-Epoxyubiquinone ₃		402	Friis et al.9
10',11'-Epoxyubiquinone ₃	-	402	Friis et al. 9
α-Epoxycoenzyme Q ₈	$C_{49}H_{74}O_5$	742	Morimoto et al. 175
α-Epoxycoenzyme Q ₉	$C_{54}H_{82}O_{5}$	810	Morimoto et al. 175
β -Epoxycoenzyme Q_8	$C_{49}H_{74}O_{5}$	742	Morimoto et al. 175
β-Epoxycoenzyme Q ₉	$C_{54}H_{82}O_{5}$	810	Morimoto et al. 175
α-Epoxycoenzyme Q ₁₀	$C_{59}H_{90}O_{5}$	878	Morimoto et al. 175
β-Epoxycoenzyme Q ₁₀	$C_{59}H_{90}O_{5}$	878	Morimoto et al. 175
Epoxyubiquinone ₁₀	$C_{59}H_{90}O_{5}$	878	Farley et al. 76
Isoubiquinone ₇	$C_{44}H_{66}O_4$	658	Imada and Morimoto ⁸⁹
α-Hydroxyisoubiquinone ₇	$C_{44}H_{66}O_{5}$	674	Imada and Morimoto ⁸⁹
cis-Coenzyme Q ₇		659	Morimoto et al. 156
cis-Monoethoxycoenzyme Q ₇		673	Morimoto et al. 156
cis-Diethoxycoenzyme Q ₇		687	Morimoto et al. 156
cis-Isocoenzyme Q ₇		659	Morimoto et al. 156
cis-Monoethoxyisocoenzyme Q ₇		673	Morimoto et al. 156
cis-Diethoxyisocoenzyme Q ₇		687	Morimoto et al. 156
Demethoxycoenzyme Q ₈	$C_{48}H_{72}O_3$	696	Morimoto et al. 175
Demethoxycoenzyme Q ₉	$C_{53}H_{80}O_3$	764	Morimoto et al. 175
Ethoxycoenzyme Q ₁₀	$C_{60}H_{92}O_4$	876	Linn et al. 48
Diethoxycoenzyme Q ₁₀	$C_{59}H_{90}O_4$	890	Linn et al. 48
Ubichromenol ₁₀	$C_{59}H_{90}O_4$	862	Links and Tol ⁵⁸
Ubichromanol ₁₀ (calculated) (obtained for 1 ubichromanol	$C_{59}H_{92}O_4$	864	Links and Tol ⁵⁸
+ 2CH ₃ OH)	$C_{61}H_{100}O_{6}$	928	Links and Tol ⁵⁸
Rhodoquinone ₁₀	$C_{58}H_{89}NO_3$	847	Thomson ¹⁵⁷
Rhodoquinone ₉	$C_{53}H_{81}NO_3$	779	Thomson ¹⁵⁷

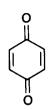
TABLE 3 The Redox Potential of Coenzyme Q Homologs and Related Compounds.

Source of Quinone	Redox couple or conditions	Redox potential	Reference
Beef heart mitochondria Synthetic ubiquinones	Ubiquinone/ubiquinol Polarography Reductive titration	$E_{m(7.0)} = +104 \text{ mV}$ $E_{m(7.4)} = +98 \text{ mV}$ $E_{m(7.0)} = +112 \text{ mV}$	Morton ¹⁵⁸ Clark ²³ Moret et al. ¹⁵⁹ Schnarf ¹⁶⁰
Subminocholidatal particles from beer heart mitochondria Complex III of beef heart mitochondria	Ubiquinone/ubiquinol Ubiquinol/ubiquinone Ubiquinol/semiquinone	$E_{m(7.0)} = +65 \text{ mV}$ $E_{m} = +30 \text{ mV}$ $E_{m} = +300 \text{ mV}$ (estimated)	Urban and Klingenberg ²⁰ Nelson <i>et al.</i> ¹⁶¹ Nelson <i>et al.</i> ¹⁶¹
Succinate-Q oxidoreductase complex from beef heart mitochondria	Ubisemiquinone/ubiquinone Q/QH_2 Q/QH_2 Q_{los}/Q^{T_2} Q_{los}/Q^{T_1} $Q^{T_1}QH_2$	$E_{\rm m} = -300 \text{ mV}$ (estimated) $E_{\rm m(7.0)} = +84 \text{ mV}$ $E_{\rm m(7.0)} = +204 \text{ mV}$ $E_{\rm m(7.0)} = +36 \text{ mV}$ $E_{\rm m(7.0)} = +33 \text{ mV}$	Nelson et al. ¹⁶¹ De Vries et al. ¹⁶²
Succinate-extochrome c reductase.	Q_{tot}/Q^{1^2}	$E_{m(7.0)} = -65 \text{ mV}$	
complex from beef heart mitochondria Synthetic ubiquinol-1	$\begin{array}{l} O/semiquinone \\ OH_2/O \\ OH^-/OH \end{array}$	$E_{m(7.4)} = +140 \text{ mV}$ $E_0 = +490 \text{ mV}$ $E_0 = +191 \text{ mV}$	Salerno and Ohnishi ²⁵ Rich and Bendall ²⁴ Rich ¹⁶³
Rhodopsueudomonas viridis chromatophores	Q ⁷ /Q Q/semiquinone Semiquinone/quinol	$E_0 = -240 \text{ mV}$ $E_{m(8.0)} = +67 \text{ mV}$ $E_{m(8.0)} = -155 \text{ mV}$	Rich ¹⁶³ Rutherford and Evans ¹⁶⁴
Rhodopseudomonas sphaeroides chromatophores	Q_2/Q_2^2 (possibly an iron complex) Q_2/Q_2H^2 Q_2H/Q_2H^2	$E_{m(7.0)} = +130 \text{ mV}$ $E_{m(7.0)} = +100 \text{ mV}$ $E_{m,7.0} = +20 \text{ mV}$	Rutherford and Evans ¹⁶⁵ Rutherford and Evans ¹⁶⁶
Mung bean mitochondria	Ubiquinone/ubiquinol Ubiquinone Ubiquinone/Ubiquinol	$E_{m(7.0)}^{m(7.0)} = +92 \text{ mV}$ $E_{m(7.0)} = +0.114 \text{ mV}$ $E_{m(7.2)} = +70 \text{ mV}$	Takamiya and Dutton ²² Shelhorn <i>et al.</i> ¹⁶⁷ Storey ²¹

TABLE 4	pK_a Values for Various Benzoquinones and Benzoquinols, Including
	Coenzyme Q ₁₀ .


	pK_a in H_2O	°C	Reference
Hydroquinone			
Coenzyme Q ₁₀ , neutral	13.3	23	Morrison et al. 168
Tetramethylbenzohydroquinone, neutral	11.2	25	
Tetramethylbenzohydroquinone, anion	12.7	25	
Benzohydroquinone, neutral	9.9	25	
Benzohydroquinone, anion	11.4	26	
Methylbenzohydroquinone, neutral	10.0	25	
Methylbenzohydroquinone, anion	11.6	26	
2,6-Dichlorobenzohydroquinone, neutral	7.3	26	
2,6-Dichlorobenzohydroquinone, anion	10.0	26	
Semiquinone			
Benzoquinone	4.00		Swallow ¹⁶⁹
Methylbenzoquinone	4.45	_	o wano w
2,6-Dimethylbenzoquinone	4.75	_	
2,5-Dimethylbenzoquinone	4.60	_	
2,3-Dimethylbenzoquinone	4.65	_	
Trimethylbenzoquinone	4.95		
Duroquinone	5.10		
4-t-Butyl-1,2-benzoquinone	5.20	_	
4-Methyl-1,2-benzoquinone	4.50	_	
3-Methoxy-1,2-benzoquinone	5.00		
1,2-Benzoquinone	5.00	_	


C. Coenzyme Q semiquinones


Coenzyme Q_{10} and its homologs (V) can be partially reduced to semiquinone form. QH⁰ generally designates the neutral or protonated ubisemiquinone (IV), Q•the ubisemiquinone anion (IVa) and QWH₂ the fully reduced ubiquinol (III). The pK_a values of ubisemiquinone and ubiquinol are reported in Table 4. Marcus and Hawley²⁷ carried out electrochemical reduction of ubiquinone-1 in acetonitrile in the presence of acids of varying proton donor strength. They found only the hydroquinone forms, but no corresponding chromanol forms expected from reductive cyclization. In other model systems Hales and Case²⁸ used immobilized neutral coenzyme Q semiquinone and the semiquinone anion to study their ESR signals. Land and Swallow²⁹ have studied the optical absorption spectra of anionic and neutral ubisemiquinone free radicals produced by pulse radiolysis.

Coenzyme Q semiquinone signals have also been detected by ESR in the membranes of *Escherichia coli*. ^{39,31} The UQ deficient mutant AN59 showed no $g = 2.003 \pm 0.001$ radical signal attributed to the semiquinone radical.

III. Quinol

IV. Protonated semiquinone (neutral)

IVa. Semiquinone V. Quinone anion

| + PhSH

FIGURE 2

Hamilton $et\ al.^{30}$ point out that a chromanoxyl radical cannot be excluded as a source for this signal.

A shift from quinol to ene-diol structure has been reported during the reduction of aurantiogliocladin. Similar changes have not been reported for isoprenoid coenzyme Q homologs.¹⁵

D. Chemical reactions of quinones (Fig. 2)

1. Oxidation-reduction

Oxidation—reduction reactions are the simplest and most frequently observed biological reactions of quinones, including coenzyme Q and its analogs. Isolated quinones can easily be reduced to colorless leuco compounds with alkaline sodium dithionite, alkaline borohydride, zinc, catalytic hydrogen or other reducing agents. These leuco forms of quinones can be reoxidized by exposure to air or oxygen.

2. Reactions with amines

Quinones, including coenzyme Q, can react with certain amines by a normal condensation reaction to yield quinone imines. This reaction has been utilized in the detection of coenzyme Q precursors.³²