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Preface

The Seventh Australasian Conference in Information Security and Privacy
(ACISP) was held in Melbourne, 3-5 July, 2002. The conference was sponsored
by Deakin University and iCORE, Alberta, Canada and the Australian Compu-
ter Society.

The aims of the annual ACISP conferences have been to bring together people
working in different areas of computer, communication, and information security
from universities, industry, and government institutions. The conferences give
the participants the opportunity to discuss the latest developments in the rapidly
growing area of information security and privacy.

The reviewing process took six weeks and we heartily thank all the mem-
bers of the program committee and the external referees for the many hours of
valuable time given to the conference.

The program committee accepted 36 papers from the 94 submitted. From
those papers accepted 10 papers were from Australia, 5 each from Korea and
USA, 4 each from Singapore and Germany, 2 from Japan, and 1 each from
The Netherlands, UK, Spain, Bulgaria, and India. The authors of every paper,
whether accepted or not, made a valued contribution to the conference.

In addition to the contributed papers, we were delighted to have presenta-
tions from the Victorian Privacy Commissioner, Paul Chadwick, and eminent
researchers Professor Hugh Williams, Calgary, Canada, Professor Bimal Roy,
IS], Kolkota, India (whose invited talk was formally referred and accepted by
the program committee), and Dr Hank Wolfe from Otago, New Zealand.

In addition we would like to thank Beom Sik Song, Willy Susilo, and especial-
ly Ken Finlayson for the vast work they put into getting this volume together
in the time available.

July 2002 Lynn Batten
Jennifer Seberry
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A New Distributed Primality Test for Shared
RSA Keys Using Quadratic Fields

Ingrid Biehl and Tsuyoshi Takagi

Technische Universitdt Darmstadt, Fachbereich Informatik,
Alexanderstr. 10, D-64283, Darmstadt, Germany
ttakagi@cdc.informatik.tu-darmstadt.de

Abstract. In the generation method for RSA-moduli proposed by
Boneh and Franklin in [BF97] the partial signing servers generate ran-
dom shares p;, ¢; and compute as candidate for an RSA-modulus n = pq
where p = (3" p:) and ¢ = (}_ ¢:). Then they perform a time-consuming
distributed primality test which simultaneously checks the primality both
of p and ¢ by computing ¢V~ = 1 mod n. The primality test pro-
posed in [BF97] cannot be generalized to products of more than two
primes. A more complicated one for products of three primes was pre-
sented in [BH98].

In this paper we propose a new distributed primality test, which can
independently prove the primality of p or q for the public modulus n = pq
and can be easily generalized to products of arbitrarily many factors, i.e.,
the Multi-Prime RSA of PKCS #1 v2.0 Amendment 1.0 [PKCS]. The
proposed scheme can be applied in parallel for each factor p and q. We
use properties of the group Cl(—8n?), which is the class group of the
quadratic field with discriminant —8n?2.

As it is the case with the Boneh-Franklin protocol our protocol is
| %51 |-private, i.e. less than |%3!| colluding servers cannot learn
any information about the primes of the generated modulus. The
security of the proposed scheme is based on the intractability of
the discrete logarithm problem in Cl(—8n?) and on the intractabil-
ity of a new number theoretic problem which seems to be intractable too.

Keywords: Distributed RSA, primality test, parallel computation,
quadratic fields.

1 Introduction

In recent literature the usage of distributed digital signature schemes is discussed
as cost-friendly alternative for high security trust center applications. This al-
lows to get rid of expensive measures to serve for the organizational security
of a single signing server as it is the common practice in today’s realizations.
Even for the process of the generation of the secret keys, methods are known
which allow a distributed computation among so-called partial signing servers,
which guarantee the correctness of the result while preventing single parties from
learning something about the secret keys.

L. Batten and J. Seberry (Eds.): ACISP 2002, LNCS 2384, pp. 1-16, 2002.
© Springer-Verlag Berlin Heidelberg 2002



2 1. Biehl and T. Takagi

Here we consider the case of the generation of RSA-like moduli which is part
of the distributed generation process of RSA keys. The distributed RSA-modulus
generation by Boneh-Franklin in [BF97] consists of two steps. In the first step
each server i(i = 1,2, ..., k) generates shares p;, ¢; of numbers p, ¢ where n = pq
is a candidate for an RSA-modulus. The shares have to be kept secret while all
servers generate the common public modulus n = pg = (3_, p:)(3_, ¢:) by means
of the so-called BGW protocol [BGW88], which is proved to leak no information
about the shares p,,q; and about p, ¢ apart from the value n as far as less than
[-k-;—lj parties collude.

To come to an RSA-modulus, p and ¢ have to be primes. If one of them
is composite the whole process has to be restarted again. Thus the expected
number of repetitions is approximately ¢2, if p and ¢ are £-bit numbers. To check
the primality in the second step a distributed primality test has to be engaged,
which checks simultaneously the primality of p and ¢. Thus, the costs for the
primality check of each candidate pair and the expected number of repetitions
to find a correct RSA-modulus are the reason for the considerable running time
of this approach.

In more details the test has the following form: At first trial division is
made to eliminate candidate pairs, which contain small divisors. Then the can-
didate pair is checked by means of the Fermat test, i.e. an integer g € Z/nZ
is randomly chosen and the servers work together to check whether ¢"*! =
[L; g7 mod n. To do so gP**% mod n is locally computed by server S; and is
sent to the other servers. The secret shares p;, q:(1 = 1,2, ..., k) are not revealed.
Notice that g"*! = [], ¢”*% mod n is equivalent to ¢‘»~@~1 = 1 mod n since
(p-1)(g—1) = n+1-> p,~3 ¢;. Since there are integers which pass this Fermat
test with high probability even if they are composite, in a last step Boneh and
Franklin engage a Fermat test in a more complicated group to cope with these
cases. The whole test is a probabilistic test and it has to be iterated to guarantee
with high probability that n = pq is a product of two primes. If the primality
test fails, then the whole procedure starting with the choice of distributed p and
q has to be repeated.

After generating shared primes p;, g;, a public exponent e and secret shares d;
of a secret exponent d = (3", d;) with ed = 1 mod (p—-1)(g—1) are distributively
computed. Catalo et al. proposed an efficient protocol to compute a sharing
of d [CGHOO]. Then the partial signing servers easily can sign messages m by
individually publishing s; = m% mod n. Verification is done as usual by checking
whether ([], s:)* = m mod n. Miyazaki et al. proposed a protocol to achieve
a k-out-of-n threshold signature for k < n [MSYO1], which is based on the
Simmons’ protocol-failure of RSA cryptosystem. A similar construction was used
for the distributed RSA, but it requires a trusted dealer and strong primes for its
security proof [Sho99]. Damgard and Koprowski dropped the conditions, namely
that the modulus must be a product of safe primes and that a trusted dealer
generates the keys [DKO01]. Recently, Fouque and Stern proposed a distributed
RSA key generation for any type of RSA modulus [FS01]. We can combine these
results to our proposed distributed primality test and construct a distributed
RSA cryptosystem.
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Contribution of This Paper

In this paper we give a new distributed primality test which can independently
prove the primality of p or g for the public modulus n = pg. The new distributed
primality test is based on the ideal arithmetic of non-maximal quadratic orders
of quadratic fields. We use the map between two different class groups of non-
maximal orders, namely Cl(—8n?) and Cl(—8g¢?%). The kernel of the map ¢, :
Cl(—8n?) — Cl(—84?) is a cyclic group with order p—(—2/p), where (-/p) is the
Jacobi symbol modulo p. We give an algorithm, which distributively generates
an ideal p in the kernel of the map ¢,. Then we can check the primality of p by

checking whether prt! 21 € Cl(—8n?). Analogously we check the primality of
g. Thus the proposed scheme can be applied in parallel for each factor p and q.

The security of the proposed distributed primality test depends on the dis-
crete logarithm problem in Cl(—8n?) and a number theoretic problem, which
can be characterized as follows and which seems to be intractable: find p or ¢
given pairs of ideals (aj,a2) and (by,b2) in O_gn2, where gp(a1) = a10_gge,
@p(az) = aa0_g42 are equivalent with exactly one reduction step in O_g,» and
©q(b1) = 010_gp2, Pg(ba) = baO_gy2 are equivalent with exactly one reduction
step in O_gp2.

To check a factor it is sufficient to do this test once. Thus the new test
is a good candidate for a more efficient practical test compared to the well-
known tests published so far. As another advantage the proposed distributed
primality test can be easily generalized to products of different form, for example
to products n = p;paps for primes py, pa, p3. We can apply it to the Multi-Prime
RSA of PKCS # 1 v2.0 Amendment 1.0 [PKCS]. This extension appears more
natural and efficient than the method proposed by Boneh and Horwitz in [BH98].

As in the Boneh-Franklin method we assume the servers to be honest but
curious, i.e. they follow honestly the protocol but may try to deduce information
about the factors of the candidate RSA-modulus by means of the exchanged in-
formation. Moreover we suppose that there is a secure communication channel
between each pair of parties. Although our method can be generalized we con-
centrate for reason of simplicity on an k-out-of-k scheme, i.e. all k servers are
needed to generate and test a candidate RSA-modulus. As it is the case with
the Boneh-Franklin protocol our protocol is [%J-privat’,e, i.e. less than Lk—;l |
colluding servers cannot learn any information about the primes of the generated
modulus.

In Section 2 we sketch the method of Boneh and Franklin. In Section 3 we
present a new distributed multiplication method DistMult which is a variant of
the BGW method and allows to distributively compute the product of arbitrarily
many shared integers. This protocol will serve as a subroutine in our primality
test. In Section 4 we will introduce as necessary basics ideals of quadratic orders
and prove the mentioned properties of the maps ¢,. Then we present in Section
5 the new distributed primality test and analyze it.
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2 RSA-Modulus Generation by Boneh-Franklin

In this section we sketch the distributed generation of an RSA-modulus by k
servers as it is proposed by Boneh-Franklin in [BF97]. Let S;(i = 1,2,..., k) be
the servers which are connected to each other by means of a secure channel. The
server S; locally generates two random integers p;,q;, and keeps them secret.
Then all of them work together to generate and publishes the modulus n = pq
with p=3".pi,q =, ¢; by means of the BGW protocol [BGW88|, which does
not reveal any information about the partial shares p;, ¢;(i = 1,2, ..., k) or about
p or q. The BGW protocol (adapted from protocols proposed in [BGW88]) and
thus the Boneh-Franklin protocol is at most [k—;—lj—private, i.e. any coalition of
{(k—1)/2] servers cannot learn any information which cannot be directly derived
by n and their own shares.

In the following we will present a similar protocol, which allows to compute
(additive) shares of the product of two (additively) shared numbers p, q.

After generation of the composite modulus in the protocol by Boneh and
Franklin trial division is applied with primes up to some not too large bound B.
Then the distributed Fermat primal}ty test is applied: for a random element g in

Z |nZZ it is checked whether g"*! = []. v; mod n, where v; = gP**+% mod n and
v; is locally computed and published by the server S;. Since n+1—3",(p; +¢;) =
(p — 1)(g — 1) the test is equivalent to the test of g?~1(¢-1) = 1 mod n. As this
relation might hold although = is not of the correct form it has to be repeated
several times for different g. Unfortunately there are composite numbers n which
are not the product of two primes but always pass the distributed Fermat test
(for all g) though. Accordingly to Boneh and Franklin the probability to get
such an integer is very small.

Apart from these rare exceptions the probability for g to lead to an accepting
test is at most 1/2 if n is not of the correct form. Thus it is sufficient to repeat
the test t times to guarantee with probability 1 — 1/2® that the found number is
of the correct form.

The security of the test is based on the intractability of the discrete logarithm
problem: To compute the shares p;,¢; one has to solve the discrete logarithm
problem for v; which is supposed to be an intractable problem. Therefore, this
distributed primality test is computationally secure and no server S; can learn
information about the shares p;,q; (1 =1,2,...,k,j # 1).

3 Distributive Multiplication of Shared Integers

We present a new variant of the BGW protocol, which is used in Section 5.

Algorithm 1 (DistMult)

Input: A prime r > pq and r > k. Each party S; has shares p;,q; (i = 1,...,k)
such that p=3_. pimodr,q = 3, ¢; mod r.

Output: Each party has a share w; (i = 1,..., k) such that pg = >, w; mod 7.
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1. Let:i=1,2,...,kand | = [k—glj The party S; generates random polynomials
fi(z), 9:(x) € Z,[z] of degree | with f;(0) = p, mod r, g:(0) = ¢; mod r, a
random polynomial h;(z) € Z,[z]| of degree 2/ and keeps these polynomials
secret. Moreover it sets w; = —h;(0) mod r as share.

2. For j =1,2,...,k each party S; computes p; ; = fi(j) mod r,q; ; = g:(j) mod
7, h; ; = hi(j) mod r and sends p; ;,q; ;, hi; to party j for all j # 4.

3. Each party S; computes

k k k
ij,,‘ Zq]-,,- + Zhj'i mod 7. (1)
=1 j=1 i=1

Then party S; sends n; to the first party S;.
Notice that for t(z) = ((3_ f;) * (3 9;) + (3. h;))(z) mod r follows: t has
degree 2! and n; = t(i) mod r.

4. Since k > 2l + 1 the first party S; knows enough interpolation points to inter-
polate t(z). Thus it computes w; = t(0) — h;(0) mod r by

Z n; - H T — h1(0) mod r. (2)
J#i
The protocol is correct since
k
5w = (10) = 1a(0) + 3 (~i(0)
=2

= (Z f.-(O)) (Z g.-(O)) + (Z h,-(0)> - (Z hi(0)>
= (Z}Pi)(zi:%) 1 | |

= pg mod r.

The protocol is I-private since less than [ + 1 colluders won’t learn any infor-
mation on any of the used polynomials (compare Shamirs secret sharing method)
and each set of £ — 1 numbers appears with the same probability as set of k — 1
output shares. Thus it is [ 1| private and one can prove the following theorem:

Proposition 1. Any coalition of at most [ L| parties can simulate the tran-
k—1

script of the DistMult protocol, thus the DlstMuIt protocol is | 55~ | -private.
Please notice that the protocol can be modified to compute pg mod a for
some arbitrary integer a. To do so it has to be applied for each prime divisor r
of a and the results have to be combined by the usual methods of Chinese re-
maindering and Hensel lifting. Even if the prime factorization of a is not known
the protocol can be applied and either works or leads to a refinement of the fac-
torization of a. In the latter case it has to be restarted with the newly improved
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partial factorization. Thus this method terminates and causes at most O(log |a|)
restarts.

Moreover, the protocol can repeatedly be applied to compute the product of
arbitrarily many factors m = g; ... g. supposed there is a prime r > m and each
factor g; is shared among the parties by shares ggl) such that ), gjz) =g; modr.
Using a tree-like multiplication sequence one needs about O(log ¢) applications
of the above protocol.

In the original BGW protocol the product value is publicly known after the
protocol. Obviously this can be achieved by publishing all w; in the DistMult
protocol.

4 Mathematical Backgroud

4.1 Quadratic Order

In this section we will explain the arithmetic of ideals of quadratic orders which
we will use in this paper. A more comprehensive treatment can be found in
[Cox89].

A discriminant A is a non-square integer such that A = 0,1 mod 4. It is
called fundamental if A =1 mod 4 and is square-free, or A/4 = 2,3 mod 4 and is
square-free. In this paper we use only negative discriminants. The quadratic field
of discriminant 4 is Q(v'A) = Q + vVAQ. The quadratic order of discriminant
Ais Op = Z + AJQ—‘/A—Z . Every element a € O, can be represented as o =

(x + yv/4)/2 for some z,y € Z. Every ideal a of O4 can be represented by

b+\/ZZ),

; 3)

a=m (aZ +
where m € Z, a € Z o, and b € Z such that b> = A (mod 4a) [BW88]. When

a is a prime integer, then we call a a prime ideal The norm of an ideal a is
defined by N(a) = aq®. A fractional ideal a of O, is a subset of Q(v/A) of the

form a = q (aZ + %Z), where ¢ = m/d € Q and a,b, and m satisfy the

criteria in equation (3). Then (g,a,b) is called the standard representation of
ideal a. If ¢ = 1 holds for an ideal q, then the ideal a is called integral If ¢ = 1
holds for an ideal a, then a is said to be primitive and in that case we represent
a by (a,b). For two given ideals a,b, we can compute their product ab which
needs O((log(max{N(a), N(b)}))?) bit operations (see, for example, [BW88]). A
fractional ideal a of O4 is invertible if there exits another fractional ideal b such
that ab = O,. The set of invertible ideals is Zx. For an element v € Q(v/4),
the ideal a generated by v is called a principal ideal. We denote it by a = (y) or
a = 704 and then v is called the generator of the principal ideal a. The set of
principal ideals is denoted by P,.

Two fractional ideals a and b of O, are called equivalent (i.c. a ~ b) if there
is @ € Q(v/A) such that a = ab. The class group Cl(A) of the quadratic order
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O, is defined as CI(A) = T4/Pa with respect to the equivalent relation ~. If a
is a fractional ideal then we denote by [a] the corresponding class. For a primitive
ideal a in Zs, we say that a = (a,b) is reduced if |b] < a < ¢ = (b* — A)/4a
and additionally b > 0 if a = ¢ or a = |b|. There is only one reduced ideal
in every equivalence class. For a primitive ideal a we denote by Reda(a) the
uniquely determined reduced ideal equivalent to a. Define the reduction operator
p,((a,b) = (%}ZA,—b) for primitive ideals a = (a,b). One can prove that
for a’ = p  (a) that a=! « a’ is principal. Then one can compute Reda(a) by
O(log® N(a)) repeated applications of p, (see [BBI7]).

Every non-fundamental discriminant A can be represented by A = A, f2,
where A is the fundamental discriminant and f is a positive integer called the
conductor (we write Ay instead of A; f2). Moreover, the order Op = Z + fO4,
is called non-marimal order with conductor f and O,, is called the mazimal
order. For a quadratic order O with conductor f, we say that a non-zero frac-
tional ideal a is prime to f if the denominator and the numerator of N(a) are
relatively prime to f. For a fractional principal ideal vO 5 (v € Q(A4)), we define:
¥O4 is prime to f if the denominator and the numerator of N(v) are relative
prime to f. We denote the subgroup of all fractional ideals prime to f by Za(f).
The subset of Z4(f) which is generated by the principal ideals yO (y € Q(4)),
whose norm is relative prime to f, is a subgroup of ZA(f) and is denoted by
Pa(f). It is well known that any ideal class in Cl(A) contains an ideal prime to
the conductor f. One can prove that CI(A) 3 TA(f)/Pa(f).

4.2 The Idea of a New Primality Test

Let A4 be the non-fundamental discriminant A;(fg)2. The relationship of ideals
in the order tower of Oa,, C Op, C O, plays the main role in our proposed
distributed primality test. There is a nice structure in the relationship between
Cl(Ayg) and Cl(Ay), namely:

Proposition 2. Consider the map ¢, : Cl(Ag,) = CUAy) with ¢,([a]) =

[004,] then
#reren =1 (1-(51))

rlg

Especially, if g is prime and (égi) = —1 then #Ker(p,) =g+ 1.

Proposition 3. Define ¢ ! : Cl(A5) —» Cl(Ag,) by ¢, ([A]) = [AN Oy,).
Then it follows for alla € T4, and [b] = ¢, (pe([a])) that [a][b]~ € Ker(ep,).

We want to use this for a new primality check for g: The idea is to compute
a kernel element [p] of ¢, and then to check whether [p#¥er(¢9)] is principal.
Thus we have to explain a method to compute such a kernel element.

Since Cl(A) 5 Ta(d)/Pa(d) for arbitrary discriminant A and integer d and
this isomorphism is a holomorphism with respect to ideal multiplication, one



