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PREFACE

This is an introductory treatment of Fourier series and their
application to the solution of boundary value problems in the
partial differential equations of physies and engineering. It is
designed for students who have had an introductory course in
ordinary differential equations and one semester of advanced
calculus, or an equivalent preparation. The concepts from the
ficld of physics which are involved here are kept on an elementary
level. They are explained in the early part of the book, so that
no previous preparation in this direction need be assumed.

The first objective of this book is to introduce the reader to
the concept of orthogonal sets of functions and to the basic
ideas of the use of such functions in representing arbitrary
funetions. The most prominent special case, that of represent-
ing an srbitrary function by its Fourier series, is given special
attention. The Fourier integral representation and the repre-
sentation of functions by series of Bessel functions and Legendre
polynomisls are also treated individually, but somewhat less
fully. The material covered is intended to prepare the reader
for the usual applications arising in the physical sciences and to
furnish a sound background for those who wish to pursue the
subject further.

The second objective is a thorough acquaintance with the
classical process of solving boundary value problems in partial
differential equations, with the aid of those expansions in series
of orthogonal functions. The boundary value problems treated
here consist of a variety of problems in heat conduction, vibra-
tion, and potential. Emphasis is placed on the formal method of
obtaining the solutions of such problems. But attention is also
given to the matters of fully establishing the results as solutions
and of investigating their uniqueness, for the process cannot be
properly presented without some consideration of these matters.

The book is intended to be both elementary and mathe-
matically sound. It has been the author’s experience that
careful attention to the mathematical development, in contrast
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iv PREFACE

to more formal procedures, contributes much to the student’s
interest as well as to his understanding of the subject, whether
he is a student of pure or of applied mathematics. The few
theorems that are stated here without proofs appear at the end
of the discussion of the topics concerned, so they do not reflect
upon the completeness of the earlier part of the development.

Ilustrative examples are given whenever new processes are
involved.

The problems form an essential part of such a book. A rather
generous supply and wide variety will be found here. Answers
are given to all but a few of the problems.

The chapters on Bessel functions and Legendre polynomials
(Chaps. VIII and IX) are independent of each other, so that
they can be taken up in either order. The continuity of the
subject matter will not be interrupted by omitting the chapter
on the uniqueness of solutions of boundary value problems
(Chap. VII) or by omitting certain parts of other chapters.

This volume is a revision and extension of a planographed form
developed by the author in a course given for many years to
students of physics, engineering, and mathematics at the Uni-
versity of Michigan. It is to be followed soon by a more
advanced book on further methods of solving boundary walue
problems.

The selection and presentation of the material for the present
volume have been influenced by the works of a large number of
authors, including Carslaw, Courant, Byerly, B6cher, Riemann
and Weber, Watson, Hobson, and several others.

To Dr. E. D. Rainville and Dr. R. C. F. Bartels the author
wishes to express his gratitude for valuable suggestions and for
their generous assistance with the reading of proof. In the
preparation of the manuscript he has been faithfully assisted by
his daughter, who did most of the typing, and by his wife and son.

RueL V. CrurcHILL.
ANN ArBOR, MiICH,,
January, 1941,
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FOURIER SERIES AND
BOUNDARY VALUE PROBLEMS

CHAPTER 1
INTRODUCTION

1. The Two Related Problems. We shall be concerned here
with two general types of problems: (a) the expansion of an
arbitrarily given function in an infinite series whose terms are
certain prescribed functions and (b) boundary value problems
in the partial differential equations of physics and engineering.
These two problems are so closely related that there are many
advantages, especially to those interested in applied mathematics,
in an introductory treatment that deals with both of them
together.

In fact an acquaintance with the expansion theory is neces-
sary for the study of boundary value problems. The expansion
problem can be treated independently. It is an interesting
problem in pure mathematics, and its applications are not con-
fined to boundary value problems. But it gains in unity and
interest when presented as a problem arising in the solution of
partial differential equations.

The series in the problem type (a) is a Fourier series when its
terms are certain linear combinations of sines and cosines.
Fourier encountered this expansion problem, and made the first
extensive treatment of it, in his development of the mathe-
matical theory of the conduction of heat in solids.* Before
Fourier’s work, however, the investigations of others, notably
D. Bernoulli and Euler, on the vibrations of strings, columns
of air, elastic rods, and membranes, and of Legendre and Laplace
on the theory of gravitational potential, had led to expansion

* Fourier, “Théorie analytique de Ja chaleur,” 1822. A translation of

this book by Freeman appeared in 1878 under the title ““The Analytical
Theory of Heat,”

1



2 FOURIER SERIES AND BOUNDARY PROBLEMS [Skc.2

problems of the kind treated by Fourier as well as the related
problems of expanding functions in series o Bessel functions,
Legendre polynomials, and spherical harmonic functions.

These physical probiems which led the early investigators
to the various expansions are all examples of boundary value
prchlems in partial differential equations. Our plan of pres-
entation here is in agreement with the historical development
of the subject.

The expansion problem as presented here will stress the
development of functions in Fourier series. But we shall also
consider the related generalized Fourier development of an arbi-
trary function in series of orthogonal functions, including the
important series of Bessel functions and Legendre polynomials.

2. Linear Differential Equations. An equation in a function
of two or more variables and its partial derivatives is called a
partial differential equation. The order of a partial differential
equation, as in the case of an ordinary differential equation, is
that of the highest ordered derivative appearing in it. Thus
the equation

u du

= 3xy
is one of the second order.
A partial differential equation is linear if it is of the first degree
in the unknown function and its derivatives. The equation
o*u g

-é—z—:-;+xy’—u=3xy

(2) 5

is linear; equation (1) is nonlinear. If the equation contains
only terms of the first degree in the function and its derivatives,
it is called a linear homogemeous equation. Equation (2) is
nonhomogeneous, but the equation

A

Frei 7 =90
is linear and homogeneous.

Thus the general linear partial differential equation of the

seeond order, in two independent variables z and y, is

xz-}—B +C LD+ B .+ B

a:c 6y
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where the letters A, B, - + - , G, represent functions of z and y.
If F is identically zero, the equation is homogeneous.

The following theorem is sometimes referred to as the principle
of superposition of solutions.

Theorem 1. Any linear combination of twoe solutions of a linear
homogeneous differential equation is again a solution,

The proof for the ordinary equation
3) ¥y’ + Py + Qy =0,
where P and @ may be functions of z, will show how the proof
can be written for any linear homogeneous differential equation,
ordinary or partial.

Let y = y:(z) and y = y2(x) be two solutions of equation (3).
Then

(4) ¥+ Py + Qu =0,
(5) v¢ + Py + Qs = O.

It is to be shown that any linear combinsation of y: and yr—
namely, Ay1 + By, where A and B are arbitrary constants—is
a solution of equation (3). By multiplying equations (4) by A
and (5) by B and adding, the equation

i + ByY + P(Ayy + Bys) + Q(Ay, + By.) =
is obtamed This can be written

dx‘ (Ayl + Bys) + P (Ayl + Bys) + Q(Ay, + Bys) = 0,

which is a statement that Ay, + By:is a solution of equation (3).

For an ordinary differential equation of order n, a solution
containing n arbitrary constants is known as the general solu-
tion. But a partial differential equation of order n has in
general a solution containing n arbitrary functions. These are
functions of k¥ — 1 variables, where k represents the number
of independent variables in the equation. On those few occa-
sions here where we consider such solutions, we shall refer to
them as “ general solutions” of the partial differential equations.
But the collection of all possible solutions of a partial differential
equaticn is not simple enough to be represented by just this
““general solution” alone.* o

* See, for instance, Courant and Hilbert, * Methoden der mathematischen

Physik,” Vol. 2, Chap I; or Forsyth, “ Theory of Differential Equatlons ”
Vols. 5 and 6.
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Consider, for example, the simple partial differential equation
in the function u(zx, ¥):
Ju

'5'1';'=0.

According to the definition of the partial derivative, the solution
is

u = f(y),

where f(y) is an arbitrary function. Similarly, when the equation
%
Freial

. . ad (odu . S

is written az\az) = 0, its general solution is seen to be

w = zf(y) + 9(»),
where f(y) and g(y) are arbitrary functions.

PROBLEMS
1. Prove Theorem 1 for Laplace’s equation

0% _

dx? + ay? + 8z2 o
2. Prove Theorem 1 for the heat equation

du oy
- k (63:2 8y3 + 622)

Note that k& may be a function of z, y, 2, and ¢ here.
3. Show by means of examples that the statement in Theorem 1 is
not always true when the differential equation is nonhomogeneous.
4. Show that y = f(z + of) and y = g(z — af) satisfy the simple
wave equation
oy _ ,9%
3z o azt’
where a is a constant and f and ¢ are arbitrary functions, and hence that a
general solution of that equation is

y=fz +a) + g(z — ab).

5. Shew that e—"* sin nz is a solution of the simple heat equation

ou _ o
a - ox?
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If Ay, As - - -, Ay are constants, show that the function
N
u = 2 A e gin nx
n=1

is a solution having the value zero at x = 0 and x = =, forall ¢,

3. Infinite Series of Solutions. let u, (n =1,2, 3, ---) be
an infinite set of functions of any number of variables such that
the series

L e e

converges to a function w. If the series of derivatives of wu,,
with respect to one of the variables, converges to the same
derivative of u, then the first series is said to be termwise differ-
entiable with respect to that variable.

Theorem 2. If each of the functions ui, Us, * ++, Uy, +++, s @
solution of a linear homogeneous differential equation, the function

= 2 Uu.
1
s also a solution provided this infinite series converges and is
termwise differentiable as far as those derivatives which appear in

the differential equation are concerned.
Consider the proof for the differential equation

6‘7
) 32 TP oo 62: at

where p and ¢ may be functions of z and {. Let each of the

+qu =0,

functions ua.(z, f) (n =1, 2, - - - ) satisfy equation (1). The
series

Eun(x: t)

1

is assumed to be convergent and termwise differentiable; hence
if u(z, t) represents its sum, then

R QU O Q% O ~Q .

dr  &dor  or <doz*’  ozot = 6z 81

Substituting these the left-hand member of equation (1) becomes

0%uy, 0%Un ~
2) 3zt TP Eax 3 T4 2 Yy
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and if this quantity vanishes, the theorem is true. Now expres-
sion (2) can be written

a2 U
2 (6:52 Pozar + q“")

since the series obtained by adding three convergent series
term by term converges to the sum of the three functions repre-
sented by those series. Since u, is a solution of equation (1),

02U 0%,
Era TP aa: ot

+qua=0 (n=1,2 ---),

and 80 expression (2) is equal to zero. Hence u(z, t) satisfies
equation (1).

This proof depends only upon the fact that the differential
equation is linear and homogeneous. It can clearly be applied
to any such equation regardless of its order or number of variables.

4. Boundary Value Problems. In applied problems in dif-
ferential equations a solution which satisfies some specified con-
ditions for given values of the independent variables is usually
sought. These conditions are known as the boundary conditions.
The differential equation together with these boundary con-
ditions constitutes a boundary value problem. The student is
familiar with such problems in ordinary differential equations.
Consider, for example, the following problem.

A body moves along the z-axis under a force of sttraction
toward the origin proportional to its distance from the origin.
If it is initially in the position z = 0 and its position one second
later is ¢ = 1, find its position z(t) at every instant.

The displacement z(f) must satisfy the conditions

d2
(1) , 07;6 = —k2z,

(2) z =0whent =0, z=1whent=1,

where k is a constant. The boundary value problem here con-
sists of the equation (1) and the boundary conditions (2),
which assign values to the function z at the extremities (or on
the boundary) of the time interval from £t = 0 to ¢ = 1.

The general solution of equation (1) is

z = C, cos kit 4+ Cs sin ki.
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According to the conditions (2), C; = 0 and C, = 1/sin k, so
the solution of the problem is

sin kt

sin k

T =

From this the initial velocity which makes + = 1 when =1
can be written

dx k
o= anh when ¢t = 0.
This condition could have been used in place of either of the
conditions (2) to form another boundary value problem with
the same solution.

In general, the boundary conditions may contain conditions
on the derivatives of the unknown function as well as on the
function itself.

The method corresponding to the one just used can sometimes
be applied in partial differential equations. Consider, for
instance, the following boundary value problem in u(z, y):

3 Ty,
(4) u(0,y) =95, u(l,y) =1

Here the values of u are prescribed on the boundary, consisting
of the lines # = 0 and # = 1, of the infinite strip in the zy-plane
between those lines.

The general solution of equation (3) is

w(z, ) = =f(y) + gV,

where f(y) and ¢g(y) are arbitrary functions. The conditions (4)
require that

(5 sy =y, [y +9@ =1,
so f(y) = 1 — 2 and the solution of the problem ig
u(z, y) = z(1 — %) + y>

But it is only in exceptional cases thaf problems in partial
differential equations can be solved by the above method. The
general solution of the partial differential equation usually
cannot be found in any practical form. But even when a gen-
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eral solution ig known, the functional equations, corresponding
to equations (5), which are given by the boundary conditions are
often too difficult to solve. A more powerful method will be
developed in the following chapters—a method of combining
particular solutions with the aid of Theorems 1 and 2. It is, of
course, limited to problems possessing a certain linear character.

The number and character of the boundary conditions which
completely determine a solution of a partial differential equation
depend upon the character of the equation. In the physical
applications, however, the interpretation of the problem will
indicate what boundary conditions are needed. If, after a
solution of the problem is established, it is shown that only one
solution is possible, the problem will have been shown to be com-
pletely stated as well as solved.

PROBLEMS
1. Solve the boundary value problem

2y
6’3: 8y ~ 0, (0 v=y, ulz,0) =sinz.

Ans. uw =y + sinz.
2. Solve the boundary value problem

%y
370y = 2z; u(@, y) =0, ulz, 0) = z%

Ans. u = z'y + x%
3. Solve Prob. 2 when the second boundary condition is replaced by
the condition
%(%02 -
Ans. u = z% + izt
4. By substituting the new independent, variables

AN=1x+ a, Q= — d,
show that the wave equation 9%/di* = a2(3%y/dx%) becomes
9 _
X
and so derive the general solution of the wave equation (Prob. 4, Sec. 2).
5. Solve the boundary value problem

0,

H=ell ymo=rFo, X2O_,
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where F(z) is a given function defined for all real z.
Ans. y = 3[F(z + at) + F(xz — at)].
6. Solve Prob. 5 if the boundary conditions are replaced by

dy(z, 0
vz 0 =0, H2Y_gq,
Also show that the solution under the more general conditions

vz, 0 = F@, 220 e

is obtsined by adding the solution just found to the solution of Prob. 5.
z+at
ans. y = (1/2a) [ 6@ de.



