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" PREFACE

Since the late 1950s, high-speed digital computers have become
increasingly available, and their use to solve electromagnetic problems
not amenable to classical analytic methods has proliferated. In 1968, R.
F. Harrington unified the majority of these methods by identifying the
underlying principle for them, which he called the method of moments
(MM) in his now well-known book published that year. The MM of
Harrington is a method which transforms a continuous operator-equation
describing the physical problem into a set of matrix equations by first
discretizing the operator equation and then performing a scalar (or
symmetric) product on it with selected weighting functions. Today, the
MM has become a widely used computational method in
electromagnetics, and is being taught as a graduate-level course, in one
form or another, at universities with a graduate curriculum in
electromagnetics.

However, there seems to be an ever-increasing number of new
computational methods in electromagnetics that may bewilder even the
well-read scholars;of the field. Thus, it is desirable to unify and
consolidate these methods, whenever possible, into an organized body of
knowledge. The author observed that the direct MM of Harrington,
iterative methods, the reaction integral equation method, and mode-
matching, etc. can all be presented within the framework of the
generalized method of moments (generalized MM) as defined in the first
chapter. This effor: of unification and consolidation is the first goal of this
book.

The second goal of this book is to present an updated and fairly
complete coversge of the subject so that this book may serve both as a
textbook and as a reference book. I also recognize that there are many
more users than developers of MM computer codes. For the code users,
the book must be highly tutorial and easy to understand. With these code
users also in mind, I have chosen a direct and reiterative style in exposing
the basic principles, technical issues, and analytic and programming
methods, particularly in their introductory phase. There are three levels
of discussions in this book. Chapter 1 provides a bird’s-eye view of the
subject. Chapters 2 and 3 present basic principles and techniques.
Chapters 5 through 12 are devoted to a thorough and detailed
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VI N PREFACE
presentation of the subject after a review of the theorems and techniques
in electromagnetics in Chapter 4. '

Electromagnetic theory is an integral part of the generalized MM.
The electromagnetic theory in this book reflects new concepts and
insights gaied in the last three decades, which have not appeared in
textbooks. ”;For example, the fields in the source region, traditionally an
obscure and overlooked topic, are a central issue in the MM and are
carefully and extensively dealt with. As another example, the magnetic
current and magnetic medium (both real and equivalent) are treated as
basig parameters, 4§ the electric current and conductor have been, in
recognition of their rapidly ascending role in modern concepts and
applications. As a result, this book can also be used as a textbook in
advanced electromagnetic theory.

This book is written with a balanced amount of mathematical rigor
and generality so that it will be sufficiently rigorous-and encompassing,
yet readable and not too pedantic for engineers and scientists.
Occasionally, a more expository approach at the expense of rigor is taken
if the theory or finding (even though being widely used and accepted) is a
recent one still being disputed. This compromise can be Jjustified by

- recalling the appearance and acceptance of the Dirac delta function in the
physics and engineering community amidst criticisms by mathematicians

about half a century ago.

In writing this book, I had in mind a reader with a minimum of one
year of graduate-level courses in electromagnetic theory and some
training and experience in Fortran programming. For a reader with such
a background, the present book should help him to comprehend journal
papers; tq use, decipher, and modify existing MM programs; and, in some
cases, to write computer programs without further literature study.

This book is intended to be fairly complete. After a general
introduction in Chapter 1, the iterative MM is discussed in Chapter 2; the
direct MM is much simpler and has been clearly introduced in Chapter 1.
Chapter 3 addresses the formulation of the integral equation as a first
step in the generalized MM, together with various basic issues associated
with the integral equations. A number of fundamental concepts,
theorems, and techniques in electromagnetic theory relevant to the

- generalized MM are reviewed in Chapter 4.

The generalized MM problems are then divided into seven major

~ classes based on their physical and mathematical commonalities, each of

which is discussed in a separate chapter with some overlaps in other
chapters. One of the simplest of these is the wire problem, which is
discussed first in Chapter 5. The surface integral equation approach and
the volume integral equation approach are two fundamental branches of
the generalized MM and are applicable to many types of geometries; they
are presented in Chapters 6 and 7 respectively.

Chapter 8 addresses a class of problems involving structures with
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boundaries suitable for formulation by eigenfunction expansions; they
can be considered as generalized cylindrical waveguides. Chapter 9 deals
with planar structures including apertures and microstrip antennas. '

Chapter 10 deals with infinite planar phased arrays and periodic -
structures. The basic technique is to exploit the ‘periodicity of the
geometric structure so that the effective domain of the integral equation
can be reduced to a small unit cell. For planar structures, the Floquet-
mode expansion makes such a unit-cell approach feasible in the exterior
radiation region.

The generalized MM discussed in Chapters 1 through 10 is for
problems in the frequency dorffain. The extension of the generalized MM
to the time domain is discussed in Chapter 11, Chapter 12 addresses
computational techniques that deal with the difficulties and limitations
in the software and hardware of modern digital computers employed in
generalized MM solutions.

Since a major purpose of this book is to serve as a graduate-level text,
initially at the School of Electrical Engineering of the Georgia Institute of
Technology, exercises are provided at the end of most chapters to help the
students gain insight and appreciation of the fine points, the difficulties,
subtleties, and usefulness of the principles and techniques discussed in
the text. Several sample computer programs are also listed in the
appendices, with explanations to-reveal the inner workings and building
blocks of the generalized MM programming.

When using this book as a text for a short one-semester or one-quarter
course in numerical methods, the author suggests that the WIRES9 code
be given to the students at.the beginning of the course to solve a few
simple problems. Simultaneously the instructor can select materials for
lectures leading togward, for example, the TM scattering of a conducting
infinite cylinder it Section 6-4. The students are then led to develop a
computer code for this problem (Exercises 6-3 and 6-4).

The author has made an effort to present the electromagnetic theory
in a fairly rigorous and updated manner so that this book can also be
useful as a companion textbook in advanced electromagnetic theory,
theoretical physics, and applied mathematics, especially for students
whose ultimate goal is the numerical solution of problems. - -

It is my pleasure to acknowledge the secretarial and artwork support
provided by the Georgia Tech Research Institute of the Georgia Institute
of Technology. The word processing skill of Ms. Lois Randolph-Savwoir is -
particularly appreciated. In the course of preparing the manuscript, a
great deal of personal time was devoted to this effort—this would not have
been possible without the support and encouragement of my wife, Lillian.

Johnson J. H. Wang
Atlanta, Georgia
May 1990
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CHAPTER1

- INTRODUCTION

1-1. The Geheralized Method of Moments

Since the late 1950s, high-speed digital computers have become
increasingly available to engineers and scientists. As a result, computer-
based techniques for solving physical problems unamenable to classical
methods have proliferated. In electromagnetics the moment method plays
a predominant role. In other disciplines, the finite element method and -
firite difference method are most widely used.

The terminology “moment method” or “method of moments” (to be
" denoted by MM throughout this book' was introduced to the
electromagnetics community by R. F. Harrington [1] in 1968 in a timely
effort to unify the rapidly growing yet poorly organized numerical
methods. At that time, the MM merely represented a basic approach to
transform an operator equation into a finite matrix equation, which could
then be solved by either a direct or an iterative matrix-solution method.

Today, more than two decades after Harrington’s unifying effort, tne
ranks of numerical methods in electromagnetics appear again teeming
with many seemingly unrelated varieties, This obviously poses as a
stumbling block to new students trying to gain an elementary, yet basic
and general, understanding of numerical methods. This is_also
frustrating to mature engineers and scientists; even they may be
overwhelmed by the many seemingly new methods appearing in the
latest journals.

The main purpose of this book is to unify anu organize a collection of
closely identifiable numerical methods and present them in a succinct
and efficient way under the generalized method of moments (generalized
MM). In the process, the electromagnetic theory and the integral
equation methods, which are integral parts of the numerical methods and
have undergone fundamental improvements in the last four decades, are
also updated.

The generalized MM is, as the subtitle of this book suggests, the

9350114 !
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complete process of formulation and computer solution of integral tor
mtegro dszerent ) equations. Before entermg a moge detalled
discussion on the ée:"lerallzed MV[ it is desirable to distinguish it from the
finite element method and the finite difference method byt eir, historical
background and prevanlmg usages in the literature.

s~ The £mte element method was first introduced in \eructural
mechanidg in the 1950s as an approximation technique to discretize the
geometric area or volume of a physical problem into small "elements",
thereby reducing the operator equation to a finite matrix equation, which
is then solved numerically. During the last thirty years, the meaning of
the finite element method has been expanded:to very broad ones, often
encompassing the finite difference method. In fact, a book on the finite
element method even states that the moment method is essentially a
finite element method.

The finite difference method is the oldest among the three meth
being originally a method for approximating dﬁferent\a:[equatmns y
discretization. It has been substantially klended into the' % erature of the
finite element method.

_The terminology method of moments or moment method (MM) has
been used in several ways to refer to various techniques for solvmg linear
operator equations. It was probably fn's\t discussed in applied

mathematics as a direct method [2] and as an 1terat1ve approach (3] for

solving linear operator equations. It has a dlfferem meaning in nuclear
physics, being a technique for solving problems in many fermion systems.
In electromagnetms this terminology was first used by R. F. Harrington
[1] in 1968 to specify a certain general method for reducing linear
operator equations to finite matrix equations. Today) the method of
moments in electromagnetics is used to mean sometimés the narrowly
defined matrix-generation technique of Harrington, and sometimes
broader and more extended methods [4, 5). ‘

All these three methods are discretization methods, gnd they have
been developed fairly independently. In the course of their expansions,
some overlaps, ambiguities, and inconsistencies arise, and it has become
unclear as to what each method represents. Therefore, at the beginning
of this book, we will try to distinguish these subjects and to draw a |
dividing line between the generalized moment method and the finite
element and finite difference methods.

It is fairly easy to draw a line between the generalized moment
method and the other two methods based on current usages.
Computations employing the generalized MM invariably reduce the
physical problem, specified by the Maxwell equations and the boundary
conditions, into integral equations (by which we mean integro-differential
equations throughout this book) which have finiie, and preferably small,
domains. In doing so, the problem is cast concretely in a small domain.

Y TigcLe



1-1. THE GENERALIZED METHOD OF MOMENTS ' 3

And it is in this small domain that discretization, the expansion of he -~

unknowns as a series of basis functions, is carried out. (Note that the
small size of the domain is essential in accommodating the limited memory
capacity of the digital compucer.) On the other hand, the finite element
and finite difference methods generally déal with the differential
equations directly. -

In bounded problems such as those in structural mechanics or the
infinitely long uniform waveguides, the unknowns are limited by their
physical nature to a finite region, which can be dinectly discretized within
the memory-storage capacity of the computer. These methods of solution
have been called the finite element or finite difference methods T
depending often on whether one chooses to.emphasize the dlfferentlal
equation or the discretization process. A survey of the over gne- “hundred
books under the title catalogue of the finite element me#Hod, as well as
investigation in the general practice in e ect;oma/etlc: supports this
observation.

Thus the formulation of a problem by integral (or integro-differential)
equations with a finite and usually small domain signifies the first step of
a generalized moment-method solution. That the generalized MM has
been playing a predominant role in electromagnetics is due to the-
generally unconfined nature of the electromagnetic wave, such as
radiation in an open region, which can be reduced to-a finite domain by
integral equations. (In some cases, such _as the periodic structures or
phased arrays, the domain of the integral equation may appear infinite,
but is actually finite or can be considered to be finite.) On the other hand,
problems in mechanics and simple waveguide problems, etc., are
physically limited to a small finite region, and therefore can be dlrectly
discretized by the finite element or finite difference method on the
differential equations without consideration of the boundary and
radiation conditions.

We have now established a clear exterior boundary for the
generalized MM. Next we will examine what is inside it. At present, the
generalized MM encompasses the direct matrix method of Harrington,
the iterative methods, the mode-matching methods, the reaction integral
equation method [6], and a large body of time-domain techniques, etc.
The “spheres of influence” of these numerical methods and their mutual
relationships are illustrated in Fig. 1-1 in a qualitative yet lucid manner.

Note that we have incorporated the entire numerical process,
including the formulation of the operator equation, into the context of the
generalized MM. We will call the MM of Harrington the direct MM; the
MM initiated by Vorobyev, the indirect or iterative MM; and we will show
that the reaction integral equation method is a direct MM. We have
defined the generalized moment method as a class of numerical solution
techniques in which a physical problem is formulated into integral
, o
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‘Figure 1-1. Major numerical methods for solving linear operator
equation.

equations in a small finite domain, on which chosen unknowns are
discretized and solved on a digital computer by a direct or iterative method.

Before entering detailed discussions, we would like to point out that
the direct and iterative MM are not the direct (exact) and indirect
(iterative) matrix solution methods generally referred to in the solution of
matrix equations, even though they are related. In the generalized MM,
an integral equation (sometimes an integro-differential equation) is
numerically solved. Although in an N-dimensional space there is a one-
to-one correspondence between an operator and a matrix, different matrix
operators can be used in direct MM to approximate the integral operator.
Thus the use of a matrix to represent a linear operator as often seen in the
literature, though enlightening in many instances, may sometlmes lead
to a narrow and limited view on the subject.

The direct MM is a generalized MM that formulates a problem into a
specific matrix, which is then solved by an exact or iterative matrix
method. Because it terminates in an exact, predetermined number of
arithmetic steps, it is called a direct method. The indirect or iterative MM
is, in general, not explicitly associated with a particular matrix, and is an

iterative process that terminates after an indeterminable number of
steps.
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The generalized MM as a numerical procedure is outlined in Fig. 1-2.
The major steps consist of the formulation of an appropriate integral
equation (IE) far the problem, the discretization (approximation) process,
and the solution of the discretized integral equation by either a direct or
an iterative method. These steps will be discussed in details in the
following sections.

In this book, the generalized method of moments will be
systematically introduced so that the reader can see how an
electromagnetic problem, described fully by the Maxwell equations and
the boundary conditions, is reduced to integral equations in a finite
domain; how the integral equations are approximated by discretization
methods; and how the discretized linear operator equations are
numerically solved by a direct or indirect (iterative) method. The
general approach is outlined in this chapter and discussed more
thoroughly in Chapters 2 and 3. After a review of some basic theorems
and techniques in electromagnetics in Chapter 4, the specific and detailed
techniques are discussed later.

[Formulate integral equation (IE) A(x)=y on S]

(y given, x unknown)
¥

Discretize IE { Choose basis functions v, ) I
N ¥ :
x=xV=2X N Approximation of unknown x
n=1
N '
z VAW ) =y Discretized IE ( approximated IE)
n=t% 'S
Solution of discretized [E |
Choose direct weighting Choose iterative weighting
functions : functions
Symmetric or l, Scalar product
scalar product ke initi £
Matrix equation Make initial guess
. . | Rterative algorithm with
Matrix solution -
! {direct or iterative) : error criteria ERR
The unk Y Make successive guesses x(V, ..., x!®
e unknown
determined a n:"ﬂ‘: {x'is a specific choice of x¥ or {x "} )
solution of JE obtained x™ is found to meet’
error criteria ERR

x**) and the corresponding {x,*}
is the solution for IE
]

Figure 1-2. Outline of the generalized MM.




6 INTRODUCTION

1-2. The Physical Problem

A macroscopic electromagnetic problem in a linear; isotropic medium is
fully described by the Maxwell equations, the cons‘f’ltutlve relationships,
and the boundary conditions. Spurious solutions are eliminated by the
use of the edge condition and the radiation condition. Since most
practical problems are time-harmonic, and since the time-harmonic
formulation has one fewer parameter, the time ¢, and therefore easier for
computatlo we will limit the physical problems under consideration to
be time- harmomc except in Chapter 11, which will deal with problems in
the time domain. For timé-harmonic fields, the Maxwell equations with
e/vtdependence ~ve

VXE=—jwB-M ) (1-1)
VXH=jwD+J ' (1-2)
V-B=m . (1-3)
vV.-D=p (1-4)

s

wherej = V —1,w = 2nf, etc., are standard.notations in the rationalized
mksc system [1, 4, 5]. (If the e Jw¢ dependence is chosen, the j's in all the
equations in this book should be changed to -j.) The constitutive
relationships are

D = (E B = uH (15)

and the equations of‘continuity are
V-dJ = —jwp V-M = —jom (1-6)

In the above equations,e = ¢ — je', u = p — ju',and £ and u are the
complex permittivity and permeability respectively. In the eight
equations above, only six of them are independent (appropriate for the six
unknowns). For example, Egs. (1-3) and (1-4) can be deduced from Egs.
(1-1),(1-2), and (1-6). ,

The differential form of the Maxwell equations is predicated on the
existence of the first derivative and hence continuity of the fields?and
media. However, we can apply the Maxwell equations to locations with
medium discontinuity by assuming that the change in medium takes
place gradually and continuously in a finite, small interval. By doing so,
we can derive a set of boundary conditions at medium discontinuities. Let
a medium discontinuity exist on surface S between regions 1 and 2, as
shown in Fig. 1-3, four boundary condmom can be derived from the



