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— PREFACE

This book had its origins in a course I introduced at the University of
Oklahoma in the spring semester of 1982. This was to be a second course in
linear algebra with computer applications. I wanted to teach students who,
in their first course in linear algebra, had learned the basics of vector and
matrix algebra and how to set up and solve the primary problems of linear
algebra—solving systems of linear equations and obtaining eigenvalues and
eigenvectors of matrices—in the way such problems arise in actual applica-
tions. That is, I intended to teach them how to recognize the linear problem
in the context of the application, how to use available computer packages to
solve the linear problem, and also how to have a feeling for the linear
algebra the package performs. I also had some definite ideas about what 1
did not want to teach them: I was not trying to create either a course in
numerical linear algebra or a course in the programming of linear algebra
algorithms—both courses are already available in the standard curriculum,
and neither is really suitable for the audience I intended to reach.

Because there was no single text available which covered the contents of
the course as I envisioned it, I began to assemble and integrate a number of
ideas from various sourcés to create my lecture notes. (Foremost among
these sources were Linear Algebra and Its Applications, by G. Strang,
Applications of Linear Algebra, by C. Rorres and H. Anton, and LINPACK
User’s Guide, by J. Dongarra et al., and the debt the present volume owes
to those works is considerable.) As with all such ventures, there was a
mixture of success and failure, but with the help (and patience!) of an

\4



vi PREFACE

enthusiastic group of students the course ultimately had more of the former
than the latter. So I gave some thought to turning my lecture notes into a
book. A conversation with David Kaplan, ultimately my editor, and some
helpful encouragement from him then helped convert these thoughts into a
commitment, and this book is the result.

There are a couple of features of this book about which the reader should
be warned. One such feature concerns the approach taken to using a
computer to solve linear algebra problems. This is done here by using
library procedures to do the linear algebra (these need to be put into simple
FORTRAN calling programs to handle input and output, of course).«
Programming purists will object, and rightly so, that this teaches the reader
nothing about converting linear algebra methods into computer code. Such
coding has all sorts of pedagogic and therapeutic value for teaching pro-
gramming, but, in my view, has as little place in a course in applications of
linear algebra as, say, requiring students to write their own procedure to
compute cosine would have in a course in calculus. Of course, calculus
students need to learn about Taylor-series expansions, and thcy should
understand that such ideas are in principle behind the cosine routines in the
computers they are using, but there is no need to postpone their using the
FORTRAN function COS(X) until they have studied enough numerical
analysis to understand why the particular rational function approximation
(which is not the Taylor series) was chosen to code this function. Similarly,
students who can understand the Q-R factorization of a matrix, say, in
terms of the Gram-Schmidt orthogonalization process, should be entitled to
use the LINPACK routine that accomplishes this factorization and to solve
least-squares problems with it, even if they are in no position to code such a
routine themselves. Briefly put, this book is aimed. at the user of linear
algebra who wishes to intelligently employ available library routines to solve
his or her problems, and is willing to employ mathematical technology (in
the form of computer routines) that he or she may not be able to recreate.

Another feature that the reader needs to be warned about is the author’s
willingness to freely use determinants in theoretical arguments. This is not
currently very fashionable; much of the modern trend in the theory of linear
equations has led to the elimination of determinants from that theory. The
reason, of course, is that a determinant is a hard thing to compute—at least
by serial processing on a large general matrix—and so most modern linear
algebra texts try to avoid their use as much as possible. Since computations
of this type are not at issue here, determinants have been used in a number
of places, in their essential algebraic sense as the basic invariants of matrices
under elementary operations. Indeed, as the theory of matrix invariants in
higher algebra shows, any invariants of matrices under such operations must
be polynomials in determinants. So it is not surprising that determinants
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arise naturally in the theory of systems of linear equations, since the
solutions of such systems are obtained by operations on matrices, and when
they do arise, they appear in our discussions.

Finally, I am happy to be able to acknowledge the help of Rhonda
Peterson, who typed the manuscript, the suggestions of the University of
Oklahoma students, who have taken the course on which this book is based,
and the encouragement of my family.

. ANDY R. MAGID .
Norman, Oklahoma

October 1984
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INTRODUCTION -

1.1 THE BOOK AND HOW TO USE IT

- This book is intended for readers who have learned some basic linear
algebra, who have a little computing experience, and who are now ready to
learn about the applications of linear algebra, perhaps with a view to using
such applications in their own work. Even with small-scale applications,
such as those considered in this book, the arithmetic involved with linear
algebra becomes lengthy, and so the use of the computer to perform
computations is stressed throughout the book. Not every, in fact not even .
most, users of linear algebra will have the inclination or training to do their
own computer coding of linear algebra computations. Fortunately, excellent
program libraries of linear algebra routines are available, and the oomputa-
tional sections of this book explain how to use them. There are various
levels of understanding that a user of a library routine may achieve; the
explanations in this book are designed to help the Yeader understand the
theoretical ideas a routine is intended to implement. It is these three themes
—apphcauons, computations, and the background necessary to understand
the computations—that form the organizing principles of this b@ok.




2 _ INTRODUCTION

Readers of this book are expected to know basic linear algebra. That is,
they should knov/ the algebra of matrices and vectors, how to solve systems
of linear equations. and know about eigenvectors and eigenvalues. In fact,
the actual number of prerequisites is rather small: readers who feel com-
fortable with the review section 1.2 on matrix and vector algebra are
adequately prepared for the rest of the book: the remainder of the chapters
are self-contained mathematically. although some additional theory is devel-
oped in the exercises. Readers are also expected to have some computing
experience. Here again, the assumed number of prerequisites is fairly small:
it is more important to have had the experience of entering programs and
data and seeing the results of computation than to have had any particular
programming or operating training. The language used for the programs in
this book is FORTRAN., Readers without previous experience in FOR-
TRAN will find in Section 1.4 an explanation of the language sufficient to
deal with programs of subsequent chapters.

The FORTRAN language is used for two reasons: (1) because of the ease
in dealing with matrices as vectors in that language: and (2) because the
linear algebra program libraries used here are in that language. The most
important of these libraries is LINPACK. written at Argonne National
.Laboratories. All of the methods in Chapters 2, 3, and 4 of this book use the
LINPACK routines exclusively, and they are used in Chapter 5 as well.
There is an excellent manual documenting LINPACK, complete with pro-
gram listings—the LINPACK User’s Guide'—which many readers will
want to consult. The aspects of LINPACK that are needed in this book,
however, are explained as they are required.

LINPACK does not contain eigenvalue /eigenvector routines. When such
routines are needed, we use the procedure EISPAC,* and the procedure
EIGREF (the latter is in the IMSLY program library). To be able to use the
programs in this book, then, the reader must have access to a computing
facility on which the LINPACK and IMSL libraries, and the EISPAC
procedure, have been installed.

The book is organized so that the methods discussed are introduced in
the order of their logical complexity. Chapter 1 is a review chapter; Chapter
2 addresses the problem of systems of equations with a unique solution.
Chapter 3 takes up the problem of systems with possibly infinitely many
solutions, and Chapter 4 the problem of systems with possibly no solutions.

1J. Dongarra et al., LINPACK User's Guide, SIAM, Philadelphia, 1979.

*A control program for EISPACK. See B. Smith et al, Matrix Eigensystems
Routines— EISPACK Guide (2nd ed.), Lecture Notes in Computer Science, Springer-\’erlag,
Heidelberg, 1976. -

$Published by IMSL, Inc. Houston Library Reference Manual provided to subscribers.
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As a group, these last three chapters constitute a study of the linear algebra
used to deal with static and steady-state applications. Chapters 5 and 6 deal
with eigenvector and eigenvalue problems associated with discrete and
continuous time (respectively) models. These two chapters are grouped
together as the study of dynamic models. A more detailed summary now
follows.

The problem dealt with in Chapter 2 is a system of n linear equations in
n unknowns whose unique solution is sought. In the theoretical sections of
the chapter, the solution process is explained by means of transforming the
system (Gaussian elimination) and by writing the system in matrix form and
factoring the matrix of coefficients (L-U decomposition). Among the appli-
cations lending to such systems, the chapter considers electrical networks,
production economic models, and static distributions. The computational
sections cover solution using LINPACK to perform L-U decomposition,
and also solutions by iteration.

In Chapter 3 systems of m equations in n unknowns are examined. In
the theoretical sections the nature of the set of solutions of such a system is
covered, along with the concept of rank and row reduction. The applications
considered are network flow, resource allocation, and economic exchange
models. There is no row-reduction routine in the program libraries, so in the
computational section one is developed, using the basic linear algebra
subroutines attached to LINPACK.

Chapter 4 also deals with systems of m equations in n unknowns, but
now the emphasis is on possibly inconsistent systems. With such a system,
the object is to find the best approximate solution. The notion of “best”
requires a' discussion of vector geometry in the theoretical sections, which
then leads into the various solution methods: the normal equations for least
squares, the Gram-Schmidt process, and its matrix form (Q-R decomposi-
tion). The applications sections deal with fitting equations to data in various
contexts. The computational sections explain how to implement the solution
methods, either via the normal equations or using the Q-R decomposition.

Chapter 5 begins the study of problems for which the desired solution
requires computation of eigenvectors and eigenvalues of a matrix. The
theoretical sections present the theory of eigenvectors and eigenvalues, and
a slight discussion of the algorithms used in their computation, as well as a
more extensive discussion of their interpretation. The applications deal with
models for which powers of a matrix, or powers of a matrix times a vector,
need to be computed, including population growth and Markov chains. The
computational sections cover using the EISPAC and IMSL eigenvalue /
eigenvector procedures.

Chapter 6 applies eigenvalue/eigenvector methods to the solution of
systems of differential equations. The theoretical sections discuss how such
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solutions are found using eigenvalues and eigenvectors to obtain the solu-
tion functions, while the applications sections focus on sources of such
problems in such areas as chemical reactions and mechanical systems. (The

- computations necessary to solve these problems are already treated in
Chapter 5.)

1.2 REVIEW OF VECTOR AND MATRIX ALGEBRA
n-vectors are column n-tuples of numbers:*

J 13! Wi

The entries vy, ..., v, of the vector v are its components. Vectors are added
by adding corresponding components and we can multiply a vector by a
scalart (number) by multiplying each component by the scalar:

v, +w av,
vt w= av=| -

v, +w, av,
1ne 0 n-vector has all its components zero, and —v is the vector (—1)v. A
linear combination of the n-vectors v, ..., v,, is a vector w of the form

w=av, + - +a,u,

If all the a, are zero, then w is zero; this is called the trivial linear
combination. If v,,..., v, are linearly dependent if some nontrivial linear
combination of them is 0; otherwise, they are linearly independent.

The collection of all linear combinations of a set of vectors is called their
span. Since a sum of linear combinations, or a scalar multiple of linear
combinations, is again a linear combination, the span of a set of vectors is
closed under vector addition and scalar multiplication.

A set of n-vectors closed under vector addition and scalar multiplication
is called a vector subspace. Every vector subspace is the span of a set of
vectors; a linearly independent such spanning set is called a basis for the
subspace. Every vector subspace, including the space of all n-vectors, has a
basis. The number of vectors in all bases of a given subspace is the same

*These may be real or complex. The latter are required only in Chapters 5 and 6. Uniess
otherwise specified, we usually mean just real numbers.
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and is called the dimension of the subspace. For the space of all n-vectors,
this dimension is n. In any subspace, a minimal spanning set or maximal
linearly indepenc=nt set is a basis. If the subspace has dimension m, then a
spanning set, or linearly independent set, of m elements is a basis.

An m by n (or m X n) matrix is a rectangular array of mn numbers into
m rows of n elements or n columns ot m elements:

a5 aln-l
A= s

e a,,.,.J
The entry in row i and column j, a,;, is called the (i, j) entry. A column
n-vector is then just an 7 X 1 matrix.

Pairs of m by n matrices can be added by adding corresponding entries,
and a matrix can be multiplied by a scalar by multiplying all the entries by
that scalar:

ay a4, by, - by,
s 4 :
am e Amn bml bmn
ay+by o a,t by,
4y tby - a,,+b,,
an o a4, cay v cay,
ol N .
Ay " Ay, €, Tt Gy,

The transpose of the m X n matrix A is the n X m matrix A7 whose
(i, j) entry is the (J, i) entry of A:

ay A a, ay a,

a=] | -

ml T mn ay, e Ay

An m X n matrix 4 and an n X p matrix B can be multiplied to obtain an
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m X p matrix:

a, a,, by, b,
A= B=|: :
am Ay b, b,
n Cip
ap=| z
Cm - Cnp

where

YT A allbij + ai2b2j + - +ainbnj
In particular, we have defined Ax where A is an m X n matrix and x an
. n-vector (= n X 1 matrix). When the relevant products and sums can be
formed matrix multiplication is associative, 4(BC) = (AB)C, distributive
over addition, A(B + C)= (AB) + (AC), but not always commutative,
AB + BA for some A, B. With respect to the transpose, matrix multiplica-
tion gets reversed:

" (4B)" = BAT

There are several alternative formulations of matrix multiplication. To
explain these simply, we introduce some notation:

(1.2.1) Rows and Columns of A Matrix. Let 4 be an m X n matrix.
Then A4;, i = 1,..., n, denotes the ith column of 4 (an m X 1 matrix) and
A', i =1,...,m, denotes the ith row of 4 (a 1 X n matrix). Symbolically,

we have
A :
A= . = [Al T An]
Am
(1.2.2) Matrix Multiplication Formulas. Let 4 be an m X n matrix and

B an n X p matrix, and let a,, denote the (i, j) entry of A and b,, the (i, j)
entry of B. Then in terms of (1.2.1):

1. The jth column (A4B), of the product AB is given by the linea
combination

(AB),=A(B)=b, A + - +b, A, forl<j<p
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2. The ith row (AB)' of the product 4B is given by the matrix
combination

(AB)'=AB=a,B'+ --- +a,B" forl<is<m -

3. The (i, j) entry (4B),; of the product AB is given by the matrix
product

(A4B);;=AB;, forl<i<m and 1<j<p

Matrix products of square (n X n) matrices are always formable. The
identity n X n matrix I, is the matrix'

1

[The (i, j) entry of I, is zero if i # j and 1 if i = j.] If A is any other
(n X n) matrix then AI, =1 A = A. A (n X n) matrix A4 is invertible if
some n X n matrix multiplies it to the identity. If 4is invertible the unique
matrix multiplying it to the identity is denoted 4~ ! and we have 44! =
A4 =1I,. A7 is called the inverse of A.

Powers of the n X n matrix 4 are defined by

A% =", Al =4, Al = AA,..., A = 44"

If 4 is invertible, the negative powers of 4 are defined by A% = (4 "1k,
With these definitions, the usual laws of exponents apply:

APAT = AP¥9 (AP)";—..APq

(1.2.3) Determinants. Thére is a number, called the determinant, associ-
ated to any n X n matrix A4, and denoted det(A4). Among its properties are:

1. If the matrix 4’ is obtained from A4 by adding a multiple of a row to

another row, or a multiple of a column. to another column, then
‘ det(A') = det(A4).

2. If A’ results from A4 by mterchangmg two rows, or by interchanging
" two columns, then det(A4") = —det(4).

tZero entries of a matrix are usually denoted by blanks in this book.
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det(ad) = a"der(A).

det( AB) = det( A)det( B).

det(1,) =

If (4),, denotes the (n — 1) X (n — 1) matrix obtained from A by
discarding row i and column j, and g, denotes the (i, j) entry of 4 .

AN S

then for any k = 1,2,..., n we have

(a) det(d) =T, (—1)**a, dey((A),) (cofactor expgmsion down
column k),

and , :

(b) det(A4) = X (—1)**a,,det((4),;) (cofactor expansion along
row k).

7. If Ais a2 X 2 matrix then det(A4) is calculated as follows:
=|a b = ad —
—[c bl det(4) = ad - b

8. If A has zeros below the diagonal (a lower triangular matrix), above
the diagonal (an upper triangular matrix), or both (a diagonal
matrix) then det(A4) is the product of the diagonal entries of A.

9. det(AT) = dey(A).

Determinants detenmne if matrices are invertible. We record this along with
other criteria for invertibility:

(1.24) Invertibility Criteria. The n X n matrix A is invertible if any of
the following hold, and conversely:

1. det(A4)+ 0.

2. Ax = 0 implies x = 0 for any n-vector x.

3. The columns of A are linearly independent.

4. The columns of A4 span the space of n-vectors.

.

" These criteria canbe expressed in terms of the equation
Ax=b -

for b a given n-v‘egor, to be solved for x: criterion.number 2 can be
interpreted as saying there is a unique solution, and number 4 as saying that
for any b there is at least one solution. If A4 is invertible, the unique solution
for any given b is '

= A" p.
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EXERCISES 1.2

i+ 3} -l

(a) Show that v and w are linearly independent.

(b) Show that u is a linear combination of v and w if and only if
2a+b-c=0.

(c) Let V be the set of all 3-vectors x such that [2 1 —1}x = [0].
Show that V is a vector subspace.

(d) Show that v,w form a basis of V.

1 1 3 s1
2. Let v, = 11 Uy = 29, Uy = 51 Uy = 8
-1 1 1 1

(a) Show that v, and v, are linear combinations of v, and v,.

(b) Show that v, and v, are linearly independent.

(¢) Show that v,,v, form a basis for the vector subspace ¥ spanned
by v,, Uy, U3, U,.

(d) ‘Find a1 X 3 matrix A such that V is the set of all 3-vectors x with
Ax = [0].

3. Let A4 be an # X n matrix with (i, j) entry a;;. Let A4,; be the matrix
obtained from A by deleting row / and column j. Let B be the n X n
matrix whose (i, j) entry is (—1)**/det(A,,). Prove that AB = det(4)],
[like property 6 of (1.2.3)]. The matrix B is called the classical adjoint of
A.

.

4. Assume A is an invertible n X n matrix and that Ax = b for n-vectors
x and b, with ith entries x; and b,, respectively. Let B be the classical
adjoint of 4 from problem 3. .

(a) Show that 4! = det(4)™'B.
(b) From x = A~'b show that

x; = (det A')—l(bilbl + -+ +b,b,)

where b,; are as in problem 3. .

() Let C, i=1,...,n, be the matrix obtained from A4 by replacing
column i by b. Using this and property 6 of (1.2.3) show that

, = (det 4) "'det(C)

(Tbis formula is known as Cramer’s rule).



