Systems Design in the
Fourth Generation

OBJECT-BASED DEVELOPMENT USING d®BASE

Systems Design in the
Fourth Generation

OBJECT-BASED DEVELOPMENT USING d*BASE

John A. Lehman
UNIVERSITY OF ALASKA

1

John Wiley & sons
NEW YORK / CHICHESTER / BRISBANE / TORONTO / SHNGAPORE

Acquisitions Editor: Joe Dougherty

Designer: Laura Nicholls

Production Supervisor: Gay Nichols

Dagital Production Supervisor Ann Louise Stevens

Recognizing the impoftance of preserving what has been
written, 1t is a policy of John Wiley & Sons, Inc. to have
books of enduring value published 1n the United States
printed on acid-freg paper, and we exert our best efforts to
that end. -

Copynight © 1991, by John Wiley & Sons, Inc
All nghts r_served Published simultaneously in Canada.

Reproduction or transiation of any part of this work beyond that permitted
by Sections 107 and 108 of the 1976 United States Copynght Act without
the permussion of the copynght owner 1s unlawful Requests for permission
or further infromation shouid be addressed to the Permissions Department,
John Wiley & Sons

Library of Congress Cataloging in Publication Data:
Lehman, John A

Systems design 1n the fourth generation using dBASE I and dBASE 1V /
John A Lehman

p cm —(Wley senes in business computing and mformation processing)
Includes index
ISBN 0-471-52752-1

1 System design 2 dBase III (Computer program) 3 dBase IV
(Computer program) I Title Il Senes

QA76 9 S88LAS 1991
005 75'65—dc20 90-48154
CIp

Printed 1n the United States of Amernica
10987654321

- Wiley Series in Computing and Information Processiug
Hugh J. Watson, University of Georgia-Athens, Series Editor

Blissmer. Introducing Computers: Concepts, Systems, and Applications, 1990-1991 Edition

Burch and Grudnitski. Information Systems: Theory and Practice, 5th

FitzGerald. Business Data Processing: Basic Concepts, Security, and Design, 3rd

FitzGerald. and FitzGerald. Fundamental Systems Analysis: Using Structured Analysis and
Design Techniques, 3rd

Lehman. Systems Design in the Fourth Generation: Object-Based Programming Using dBASE

Nelson. End-User Computing: Concepts, Issues, and Applications

Panko. End-User Computing: Management, Applications, and Technology

Stern and Stern. Computing with End-User Applications

Stern and Stern. Computing with End-User Applications and BASIC

Vazsonyi. Information Systems for Management

Watson and Blackstone. Computer Simulation, 2nd

Wysocki and Young. Information Systems: Management Practices in Action

Wysocki and Young. Information systems: Management Principles in Action

ABOUT THE AUTHOR

John Lehman has worked as a user manager, an applications programmer, a systems
programmer, and a software project manager. He is the author of the first asticle on
programming languages for personal computers, as well as the first articles on business use
of personal computers, and the first personal computer programs for financial analysis and
statistical analysis. His doctoral dissertation was the first integrated software system,
combining financial analysis, statistics, database management, and presentation graphics.
He has consulted and/or taught for IBM, UNISYS (formerly Sperry and Burroughs),
Control Data, Honeywell, and several noncomputer Fortune S00 companies. He has tdught
at the University level since 1973 and beginning in 1983 has taught proggam design in the
American Assembly of Collegiate Schools of Business summer MIS Faculty Development
Institute. He is also a Certified Management Accountant (CMA).

ACKNOWLEDGMENTS

I am grateful to many people for their contributions to the development of this book. I owe
particular thanks to the following:

At the AACSB MIS Faculty Development Institute, to Gary Dickson and Chuck
Hickman for giving me the chance to refine these materials on 350 faculty guinea pigs, and
to the guinea pigs themselves.

At the University of Alaska, to Peter Biesiot, and Mike Rice for providing an
environment where I could write 50 pages a week, and te my students for a great deal of
useful feedback.

At the University of Mlchlgan, to Jim Fry, Tom Schrieber, Dan Teichrow, and
especially to Dennis Severance for inflicting me on the academic world.

At the University of Minnesota, to Gordon Davis and Sal March for extensive advice,
encouragement, and assistance.

In the Real World, to Tim Fargo at UNISYS, and especially to the two successful MIS
practitioners in my family: my sister Lee whose systems from London to San Francisco and
from Miami to Valdez come in on time and under budget, and my wife Lisa who is a Real
Programmer on Real Computers (mainframes), and only occasionally believes that IBM
stands for “In Bleakest Mordor.”

And finally to Don Barker, College of Business Administration, Gonzago Univer-
sity, Spokane, Washington; Jennifer L. Wagner, MSIS Program Director, Roosevelt
University, Chicago, Illinois; Mark A. Schlesinger, College of Management, University of
Massachusetts, Boston, Massachusetts; Hugh Watson, Department of Management,
University of Georgia, Athens, Georgia; and Cyrus Azarbod, Computer Science Depart-
ment, Mankata State University, Mankato, Minnesota for their efforts as reviewers in
helping turn a raw manuscript into a much more useful text!

John A. Lehman

vi

PREFACE

1is is a book on modern programming practices as they are adapted to fourth generation
inguages (described in Chapter 4). They are here applied to a specific fourth generation
anguage: dBASE-MI+ and IV. This is not a book on DBASE programming. Rather, it is
» book on analysis and design in a fourth generation environment using DBASE examples.
Although this book may be used as a programming textbook in conjunction with the
IBASE manuals, its main contribution is language-independent.

There are two audiences for this book: students of programming (primarily in
husiness schools) and people who do programming and wish to learn more about it.

For students (and their instructors!) the book has several advantages over competing
rextbooks. First, it teaches modern techniques of systems analysis and program design
n the context of fourth generation languages. In so doing, it combines instruction in
nodern systems analysis and programming practices with instruction in what is probably
he most popular fourth generation language, and with instruction in business systems.
Additional advantages are the use of a consistent case study (which teaches about business
programming), and the testing that the book (and the teaching method that it represents) has
undergone. An additional and unique aspect of this book is that it avoids the use of
acronyms except where their non-use would be in blatant conflict with indusiry
terminology. o : _

One of the problems encountered in teaching programming is the need for potential
managers and programmers to learn three things: .

+ How Business Information Systems Work,
* How to Design Programs,
* How to Implement Programs.
Most of us do not have the luxury of three separate courses in these areas. However,

this textcovers all three. The case study, which is integrated with the discussion throughout,
teaches about common transaction-driven systems in business—customer orders, purchase

orders, inventory management, billing, and so forth. This provides the student with a

knowledge of what such information flows are like and practice in creating programs that
are of immediate use. Thus, an instructor who wishes to teach programming, program
design, and business systems in the same course need use only one text.

vii

Vil ererace

A second advantage of this text is that, unlike existing books on program design, this
one modifies the use of analysis and design methods to fit in a fourth generation, database-
oriented environment. Many of the methodologies developed for COLOL and file-
processing environments are irrelevant, or require modification when they are used with
higher-level languages. Specifically, this text integrates data modeling techniques from
database design and event-driven analysis techniques. The techniques taught in this book
have been proved in both personal computer and mainframe programming environments,
using a variety of fourth generation languages.

The course on which this book is based has been taught at both large and small
schools, at both the graduate and undergraduate level. It has also been taught to program-
mers and managers at a number of Fortune 500 companies. In addition, for seven years it
has been taught to faculty from around North America at the American Assembly of
Collegiate Schools of Business (AACSB) MIS Faculty Development Institute in Minne-
apolis. This text incorporates suggestions from all of these students (thank you all!)

For the other audience, that of people who are not in school but who wish to develop
additional skills, probably on a personal computer, the advantages are much the same. The
text covers both how to design programs and how to program in dBASE [l and dBASE IV,
Most of the content of the book will continue to be valid no matter what computer system
one uses. In addition, the case study provides a ready-to-use system for much business
programming.

John A. Lehman

SECTION |

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4

SECTION Hi
CHAPTER 5

CHAPTER 6
CHAPTER 7
CHAPTER 8
CHAPTER 9

SECTION il
CHAPTER 10

CHAPTER 11
CHAPTER 12

CHAPTER 13

SECTION IV
CHAPTER 14

CONTENTS

INTRODUCTION AND BACKGROUND

Introduction

Design

Transaction Processing Systems
Introduction to dBASE

SYSTEMS ANALYSIS AND THE SYSTEM MODEL

Object Modeling and Entity Relationship
Diagram

Event Modeling and Data Fiow Diagrams
Data Type and Structure

Normalization

Design of the User interface :

PROGRAM MODEL: ARCHITECTURE

Program Architecture and Modularity:
the Structure Chart

Object-Oriented Design

Measures of Design Quality

Case Study: Structure Charts

PROGRAM MODEL: INDIVIDUAL MODULES

Control Structures, Operations, and
Structured Programming

Ix

17
30
44

59
81
96
114

128

155
178
197
223

233

X CONTENTS

CHAPTER 15

CHAFTER 16

SECTION V

CHAPTER 17
CHAPTER 18
CHAPTER 19

SECTION VI

CHAPTER 20
CHAPTER 1

%

EPILOGUE

APPENDIX A

Data Structure-Based Design
(The Jackson Approach)
Case Study: Action Diagrams

CODING

Overview of dBASE il
Overview of dBASE IV
Case Study: Coding

LATER STAGES IN THE LIFE-CYCLE

Program Testing
Physical Packaging

SUBJECT INDEX

256
273

289
302
314

335
348

367

369

377

Section 1

INTRODUCTION
AND BACKGROUND

Chapter 1

INTRODUCTION

HOW THIS BOOK CAME TO BE

This is a book about modern programming practices as applied to a specific fourth
generation language—dBASE (versions III and IV). By way of introduction to the need
both for modern programming practices and for fourth generation languages, let me explain
how I got involved in this field.

Most readers, whether students or practitioners, are familiar with the process of
registering students at a university-—a somewhat specialized version of the general task of
entering customer work orders. Most major universities put this operation onto punched
cards in the 1930s or 1940s, and until the late 1960s, registration was generally done in
some sort of batch mode.

In 1968, the university in question decided to produce an on-line registration system.
Since everything in data processing needs an acronym, let us call this CRISP (Computer-
ized Registration In Spite of Problems). The estimate in 1968 was that the system would
take three years to develop, require four programmers, one manager, and cost approximately
$300,000. It was also estimated that 20 operators would be required to run the system
during registration.

In the early 1970s, my second job out of college was as registration supervisor.
CRISP was brought on-line in 1975-—four years late. Total cost to this time was around
$1,500,000. A major hardware upgrade had been required, and 30 operators were now
needed. Under the old batch system, registration had required about an hour. Under the new
on-line system, the average wait to register was approximately nine hours. When high-level
administrators showed up to see what was happening, students spat on them. The director
of registration had a nervous breakdown and spent the rest of the week at a terminal
checking registering students for library fines. I took his job. The system development life-
cycle for CRISP is illustrated in Figure 1-1. Ironically, within 10 years the data processing
department, which had developed CRISP, was using it as an example of a successful system
design effort—marred only by a minor database path specification error that had caused
problems at first.

@4 NTRODUCTION AND BACKGROUND

« Wild Enthusiasm

« Disillusionment

* Total Confusion

* Search for the guilty

« Punishment of the innocent

+ Promotion of the nonparticipants

FIGURE 1-1 Real-world system development lifecycle.

The next year I went back to school to get an MBA and learn what went wrong. At
the time, I thought my caperience was uniquely terrible. I soon learned it was normal for
large computer projects. About the same time, personal computers and fourth generation
languages appeared. Hence, this book.

GOALS
This book has two goals:

* To describe modern programming techniques as applied to database-oriented fourth
generation languages.

¢ To describe how to use DBASE III and IV to create successful programs using those
techniques.

A major problem in computer use over the years has been that rapid changes in technology
make knowledge obsolete. A given piece of hardware becomes obsolete in a few years, and new
versions of software mandate significant relearning every year or two. Much of the reason for
this problem is that we traditionally learn details rather than principles. A course devoted only
to the syntax of a particular programming language becomes obsolete when that language
changes. A widespread example of this problem is the large number of applications program-
mers in industry who have leamed COBOL rather than computer programming, and who
therefore find that a change to more modern languages would make most of their knowledge
obsolete. .

This book presents an altemnative approach. Although it is intended to help you leam to
develop complex systems in dBASE IIT and IV, 90% of the contents of the book involve
principles of program design that are valid for any database-oriented language. Thus, as the
dBASE standard changes over time, most of what you leam in this book will continue to be valid.
What is important is not the syntax of a particular language but rather the principles of program
design which that language instantiates. These are important for several reasons.

_ DESIGN

N S)
Wh\y is differemggproach to programming? After all, programming textbooks since the 1950s
have concentrated on language syntax and have left design issues for advanced courses. The

N

INTRODUCTION B

Nominal Price in
Year Price 1988 $
1965 $1.50 $5.13
1975 $0.04 $0.085
1985 $0.0001 $0.0001
1987 $0.00009 $0.00009
1990 $0.00007 $0.00007

FIGURE 1-2 Price per byte of memory.

reasons why it is important to concentrate on design rather than syntax arise from both technical
and organizational problems.

The first problem (or more correctly, opportunity) is the precipitous drop in computer
hardware costs. You have probably seen the advertisements that boast that if cars hac evuived
like computers, a Rolls Royce would cost a nickle and get two million miles per gallc.1. Figure
1-2 shows some comparative prices for computer hardware, adjusted for inflation.

This rapid decline in hardware prices has two impacts on program desi gn. First, the goals
of programming are changed. Many programming techniques were developed at a time when
computer memory and computer speed were far more expensive than they are today. As a result,
these techniques save hardware costs at the expense of people costs. As we shall see in the next
few paragraphs, this is backwards with current technology.

An additional impact of declining hardware cost comes from increased demand. As an
example, in the twelve years between 1961 and 1973, Digital Equipment Corporation produced
about 20,000 of their popular PDP-8 minicomputers—the most popular machine of its day [DEC
1973]. In 1987, IBM produced more than 1,000,000 PS/2 personal computers in six months-—
and this represented less than 40% of the market for personal computers alone dyring that period
{PC Week 1987]. All of these computers being used by more and more people means that the
demand for programs is far higher than it used to be, and the demand is growing exponentially
each year,

Additionally, these new computers are increasingly powerful. This means that they
require more complex software. In 1974, for example, an IBM 370/158 mainframe provided
service for over 100 users and was catered to by a staff of more thanadozen professionals. Today,
the same computing power sits on my desk.

//FORT EXEC 'PGM=IEYFORT,REGION=100K
//SYSPRINT DD SYSOUT=A .

//SYSPUNCH DDS YSOUT=B

//SYSLIN DD SNAME=&LOADSET

// DIsSP=(MOD, PASS),UNIT=SYSSQ,

// PACE= (80, (200,100) ,RLSE) , DCB=BLKSiZE=80
//SYSIN DD *

FIGURE 1-3 1BM 360 JCL (circa 1968

6 INTRODUCTION AND BACKGROUND

As hardware costs have fallen, software development costs have increased. This is
due to two reasons: the cost of programmers is higher, and programs are far more complex
than was true in the past. One of the reasons for this complexity is that as computers become
more integrated into everyday work, they must become easier to use. As a result, modern
programs devote a very large portion of their code to implementing a more-or-less friendly
user interface. Fifteen years ago this would have been considered a waste of time; now even
user-group freeware is user friendly. Consider, for example, the difference between the Job
Control Language (JCL) required to run a program on an IBM 360 (Figure 1-3) and doing
the same task by moving the cursor over the file with the mouse and clinking the mouse
button twice on a Macintosh—and consider that the IBM 360 probably served several
hundred people, whereas the Macintosh serves one.

Software development costs do not tell the whole story, however. Depending on the
organization, between 70% and 90% of software cost is incurred in program maintenance—
the modification of existing programs. Some of this maintenance is required because bugs
are discovered in the programs, but most is required because user needs change, the
- business environment changes, or the technical environment changes. To make the
problem worse, traditional program development methods produce programs that ‘are

- GAO Software Project Study

FIGURE 1-4 GAO Software project study.

INTRODUCTION 7

difficult to maintain. One of the major goals of modern program design, therefore, is to
produce programs that are easy to maintain and to modify.

All of these changes in the computer environment are a prelude to the basic
problem—software design is not a reliable process. The registration system described
earlier is not unique: almost all large software projects are

* Over budget
« Late
» Not what the user expected.

-mem

FIGURE 1-5 The systems development life-cycle.

