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Preface

The subject matter which I have tried to cover in this book makes it suitable primarily
for postgraduate students and teachers of spectroscopy. At the same time I have
attempted to present the material in such a way that it will prove rewarding to an
undergraduate student who wishes to read selected sections of the book in order to
understand more clearly a part of spectroscopy which may be covered too superficially
in an undergraduate text.

In the past ten years or so, development of instrumentation in spectroscopy has
caused what was already a vast subject to continue to expand, and at an even greater
rate. What makes the increased expansion seem particularly remarkable is that it
started at a time when the subject had become somewhat stagnant in the sense that
developments tended to be confined to the application of standard experimental
techniques to new and interesting molecules.

In this book I have confined myself mostly to what is implied by the title, namely high
resolution spectroscopy. In general, this means that the sample is assumed to be in the
gas or vapour phase. All the main branches of spectroscopy are covered, the exceptions
being electron spin resonance and nuclear magnetic resonance. Photoelectron
spectroscopy is included, not because it is basically a high resolution technique, but
because the resolution is so much better than in previous attempts to obtain ionization
potentials of polyatomic molecules. In addition the subject is so closely related to
electronic spectroscopy as to merit inclusion for this reason alone.

It has been my aim to present an overview of microwave, millimetre wave, infrared,
visible, ultraviolet, Raman, photoelectron and laser spectroscopy with a bias towards
the experimental aspects and to provide the reader with many illustrations of spectra. In
the high resolution field such instrumental developments as continuously recording
microwave spectrometers, sources for millimetre wave spectroscopy, infrared and
visible interferometers, ultraviolet and X-ray photoelectron spectrometers and,
particularly, lasers have created revolutionary changes in research and also in teaching.
It never has been the case that the most recent advances in research are necessarily too
difficult to understand for them to be included in an undergraduate course, and that is
probably more true now than ever it was. One example is photoelectron spectroscopy
which has been developed almost entirely since 1963 and which seems tailor-made to
drive home the validity of the concepts of atomic and molecular orbitals. Another
¢xample is provided by lasers which we now read and hear about so much in science
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vi  Preface

generally that an undergraduate should learn something of their construction and uses.

With such rapid developments in high resolution spectroscopy it has become quite
common for advances in restricted parts of the field to be reported in the form of
reviews, each written by a different author and published in the mushrooming numbers
of review publications. Throughout this book I have referred to many such reviews
which have an important part to play in the scientific literature. Complementary to
these is a book, such as this one, in which a single author is able to stress the unifying
aspects of all the branches of the subject. Such unification is probably more easily
appreciated by today’s spectroscopists than those of say twenty years ago. In those days
many spectroscopists had to build their own instruments which necessitated, for
example, a microwave spectroscopist having to be an electronics expert and an infrared
or ultraviolet spectroscopist requiring a thorough knowledge of optics. It is not surprising
that acquiring this expertise, building instruments and recording spectra in one branch
of spectroscopy took so much time that those who were able to make important
contributions in more than one branch were exceptional.

In a book covering such a wide range it is not possible to give a comprehensive list of
references. In the first six chapters I have relied mainly on the books and reviews
referred to in the Bibliographies (at the end of the chapters) for providing references.
The material covered in Chapter 7 and, more especially, Chapter 8 is generally much
more recently developed so that I have found it necessary to provide more references for
these chapters. The list of references is at the end of the book.

I have tried as far as possible to avoid acronyms and abbreviations which abound in
the literature of spectroscopy but which may often confuse the reader.

During the writing of this book I have been greatly helped by stimulating discussions
with colleagues at Reading University, particularly Professor I. M. Mills, Professor
G. W. Series and Dr A. G. Robiette.

I am especially grateful to Dr J. P. Maier, Dr J. W. C. Johns, Dr A. G. Robiette, Dr
J. K. G. Watson and Professor D. H. Whiffen, who have each read through a chapter
of the book at the manuscript stage and without whose comments, criticisms and
corrections there would be more errors and omissions than those which may still be
present, and also to Dr T. Ridley, who helped in checking the proofs. :

Some of the figures have been made from original spectra and I wish to express my
thanks to the following who supplied them:

Figure 4.13 Professor I. M. Mills

Figure 4.15 Dr A. G. Robiette

Figure 4.21 Dr R. K. Heenan and Dr A. G. Robiette
Figure 4.27 Professor 1. Ozier

Figure 4.33 Dr R. J. Butcher

Figure 5.10 Professor S. Brodersen

Figure 5.50 Professor I. M. Mills and Dr P. H. Turner
Figure 5.54 Dr A. G. Robiette

Figure 5.55 Professor I. M. Mills and Dr P. H. Turner
Figure 5.57 Professor H. Wieser

Figure 5.58 Professor I. M. Mills and Dr P. H. Turner
Figure 5.59 Professor I. M. Mills and Dr P. H. Turner
Figure 6.46 Dr R. F. Barrow

Figure 6.49 DrR. F. Barrow
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Figure 6.104 Dr A. E. Douglas
Figure 6.105 Dr G. Herzberg
Figure 6.107 Professor 1. M. Mills
Figure 8.94 Dr T. Ridley

The rest of the figures, other than those which are reproduced directly from journals
or books, have been drawn by Mr H. Nichol and I am very appreciative of the way in
which he has managed to interpret my intentions.

My thanks are due also to various typists who have been involved with producing the

final manuscript but especially to Mrs A. Gillett who did such an excellent job in typing
about three-quarters of it.

J. Michael Hollas



Fundamental constants

Quantity Symbeol Value and unitst

Speed of light (in vacuo) c 2.99792458(1) x 108 ms ™"
Vacuum permeability 4nx 107 "Hm™!

Vacuum permittivity tol=pg 'c™?) 8.854187818(71) x 10" *Fm™!
Charge on proton e 1.6021892(46) x 107 '°C
Planck constant h 6.626176(36) x 107 3*J s
Molar gas constant R 8.31441(26)Jmol 'K !
Avogadro constant N, 6.022045(31) x 10?* mol ™!
Boltzmann constant kK(=RN:Y) 1.380662(44) x 10723 JK !
Atomic mass unit (=10 *kgmol "' N3')  1.6605655(86)x 10~ " kg
Rest mass of electron m, 9.109534(47) x 107" kg
Rest mass of proton m, 1.6726485(86)x 10~ *" kg
Rydberg constant R, 1.097373177(83) x 10’ m ™!
Bohr radius a, 5.2917706(44) x 10~ "' m
Bohr magneton ugl=eh(2m,)™'] 9.274078(36)x 107 T}
Nuclear magneton Un 5.050824(20)x 10"27JT!
Electron magnetic moment e 9.284832(36)x 10724 J T~
g-factor for free electron Lg(=peps ') 1.001 159656 7(35)

+ The uncertainties in the final digits quoted are given in parentheses.

Useful conversion factors

Unit cm ! MHz kJ eV kJ mol ™!
lem™! 1 29979.25 1.98648 x 1072¢  1.23985x10™*  11.9627x 107"
1 MHz 3.33564%x 107° 1 6.62620 x 10737 413571x 1079  3.99033x 107~
b kJ 5.03403x 10°°  1.50916x10°° 1 6.24144 x 102" 6.02205 x 10%°
leV 8065.49 2.41796 x 108 1.60219x 10722 1 96.485

1 kJmol™! 83.5932 250606 % 10°  1.66056 x 10 ~** 1

1.03643 x 10”*
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1

Quantization of energy

1.1 Historical evolution of quantum theory

During the late nineteenth century much attention was focused on phenomena which
defied explanation in terms of the newtonian laws of classical mechanics. One such
phenomenon was the emission spectrum of atomic hydrogen which had been observed
to consist of discrete wavelengths rather than the continuous range of wavelengths
which classical mechanics predicted. Balmer, in 1885, was able to fit the wavelengths
4, observed in the visible region of the spectrum and comprising what we now call the
Balmer series, to the empirical formula

A=n"G/(n" —4) an

where G is a constant and n’ is an integer which can take only the values 3,4, 5, .. . . For
electromagnetic radiation, of which visible light is a part, the frequency v is related to
the wavelength by

c=vA (1.2)

where ¢ is the speed of light. Equation (1.1) can be written more usefully, in terms of
frequency, in the torm :

v=Ryl(1/2%)—(1/n"")] (1.3)

Ry 1s the Rydberg constant for hydrogen and is named after Rydberg who, in 1890,
proposed that expressions of the form of equation (1.3) should be applicable to the
spectra of not only hydrogen but of other elements. In 1908, Ritz realized the importance
of the fact implied by equation (1.3) that the frequencies in an atomic spectrum can be
expressed as the difference between two terms: in this case the terms are Ry/2* and
Ry/n”.

Another phenomenon which could not be interpreted classically was the frequency
distribution of radiation from a black body. The distribution of the energy over a range
of frequencies and also the way in which the distribution changes with temperature is
‘illustrated in Figure 1.1. The attempts by Rayleigh and Jeans in 1900 to derive as
equation to reproduce the observations were successful at low frequencies but were
unable to predict the maximum in the energy distribution and the decrease at high
frequencies. On the other hand, in 1894 Wien had been able to predict how the frequency
at which there is a maximum in the energy distribution changes with temperature.

e
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2 Quantization of energy
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Figure 1.2 Dependence of the kinetic energy of
Figure 1.1 Frequency distribution of black body photoelectrons on the frequency of incident
radiation, and its dependence on temperature radiation

The photoelectric effect also defies classical laws. The effect is observed when
ultraviolet radiation falls on the surface of a metal. If the frequency of the radiation is
continuously increased nothing happens until a frequency v,, the threshold frequency,
is reached when electrons, so-called photoelectrons, are emitted from the metal surface.
As the frequency is incrgased, further electron emission is instantaneous and the
photoelectrons have kinetic energy which is proportional to the frequency. This
behaviour is shown in Figure 1.2. All metals have their own characteristic threshold
frequency. What was expected from classical physics was that the electrons in the metal
would require a certain specific amount of energy, known as the work functiont, to
release them from the surface. If the radiation was of low frequency, i.e. of low energy,
then it would take a considerable time, which would be dependent on the quantity of
radiation falling on the surface, for the metal to absorb enough energy to release an
electron: for radiation of high frequency the time for electron release would be shorter.
But the experimental observations are clearly a contradiction of these expectations.

A further difficulty, inexplicable using classical laws, was the temperature dependence
of the molar heat capacity, C,, of a solid at low temperatures. In 1819, Dulong and Petit
had derived the expression

. =3R (1.4)

wheare R is the ideal gas constant, which requires that C, is independent of temperature,
but this is far from the case at low temperatures, as shown by Figure 1.3.

The breakthrough which led to satisfactory explanations of the hydrogen atom
spectrum, black body radiation, the photoelectric effect and heat capacities of solids was
made by Planck in 1900. His theory of black body radiation requires that the oscillators

tPhe work funcuion s really o solni=fate 1ntzanon potential



1.1 Historical evolution of quantum theory 3

3L ________ Dulong and Pefit
Einstein
Lo
R “Debye (exptl)

| | Figure 1.3 Temperature dependence of the molar
01,5 10 15 heat capacity, C,, of a solid at low temperatures.
1/8 The quantity € is the Einstein characteristic

temperature where 8 =hv/k
of which a black body is made up and which are responsible for the emission of energy
can oscillate only in such a way that the energy E emitted is given by
E = nhv (1.5)

where n is an integer, v is the fundamental frequency of the oscillator, and 4 is a constant
which we now know as Planck’s constant. The energy is said to be quantized in discrete
packets, or quanta, each of magnitude hv. The expression which Planck obtained for
p(v), the density of radiation of frequency v for a black body, is

p(v) = 8hv*{cYexp (hv/kT)— 1]}~ (16

where c is the speed of light.

The fact that the idea of quantization of energy was not formulated until 1900 was due
undoubtedly to its appearing, at first sight, to be at variance with our experience of the
macroscopic world. For example, in the case of a simple pendulum swinging at a
constant frequency we can give the pendulum any energy we choose by starting it
swinging with a larger or smaller amplitude. Similarly if we construct a ball and spring
model to simulate an oscillator in a black body we can, by choosing the initial impetus
which we give to it, choose the energy with which it oscillates.

Part of the answer to this apparent anomaly in the behaviour of microscopic systems,
regarded here as those on an atomic or molecular scale, and macroscopic systems is the

very small value of Planck’s constant: the present accepted value, which dates from
1973, is

h=(6.626176+0.000036) x 107347 s (1.7)

Therefore the magnitude of energy quanta of a simple pendulum oscillating with a
period of, say, 1s is only 6.626 176 x 107 3*J. It is hardly surprising that quantization
escaped notice in macroscopic systems !

In 1906 Einstein explained the photoelectric effect in terms of quantization of the
energy, in the form of ultraviolet light, falling on the metal surface. Only when the
quanta of the radiation have sufficient energy hv to overcome the forces binding the
electron to the metal, the work function, will a photoelectron be ¢jected. As the energy
and frequency of the radiation increase the excess energy of hv over the work function
will appear as kinetic energy of the photoelectrons.




