INTRODUCTION TO
COMPUTER ARCHITECTURE
AND ORGANIZATION

HAROLD LORIN

INTRODUCTION TO

COMPUTER ARCHITECTURE

AND ORGANIZATION

HAROLD LORIN
IBM Systems Research Institute, New York

\\%qu\k&q0
1807 \%/ 1982
.A"BL’SH\‘)O

A Wiley-Interscience Publication
JOHN WILEY & SONS
New York . Chichester . Brisbane . Toronto

. Singapore

Copyright © 1982 by Johh Wiley & §ins Inc
All rights reserved. Publlsﬁcd simultaneously m C‘;&nada

Reproduction or translation of any part ot IMOrk
beyond that permitied by Section 197 -r-108 of the

1976 United States Copynight Act without the permissian
of the copyright owner 1s unlawtul Requests for
permission or further information should be addressed to
the Permissions Department John Wilev & Sons Inc

Library of Congress Cataloging in Publica.ion Data.
Lorin, Harold.
{ntroduction to computer architecture and organization.

A Wiley-Interscience publication.”
Includes bibliographies and index.

{. Computer architecture. 1. Title.
" QA76.9.A731.67 1982 621.3819'52 82-8640
ISBN 0-471-86679-2 AACR2

Printed in the United States of America

w9 8 76 5 4 3 21

PREFACE

This book is an introduction to computers for people who know something
about computing. it is aimed at the population of computer professionals and
paraprofessionals, casual users, and all others who have some view of comput-
ing but know nothing about the logical and organizational nature of a comput-
ing device.

As the computer field has matured, it, like all advancing areas of knowledge,
has fragmented into a number of specialties. There are a number of very compe-
tent computer professionals who know many aspects of software specification,
data base design, large application development technique, and so on, but do
not know much about the instrument on which their miracles are performed.
There is also a large population of computing professionals who know about
the technology of computer manufacture or packaging digital technology but
have never formed a complete image of the nature of the device they manufac-
ture or whose subassemblies they design. Finally, there is the growing popula-
tion of casual users whose curiosity has been piqued by their contact with com-
puters and who would like to know more about them.

This book is for all these people. It assumes that the reader has some knowl-
edge of languages like Basic, FORTRAN, and coBoL, and, starting with known
concepts, guides the reader through various stages of computer hardware archi-
tecture and organization. It is my opinion, however, that the slightest familiari-
ty with the general ideas of higher-level languages is a sufficient starting point.

This book was developed over a period of years as a result of my interaction
with both graduate and professional students. A number of these students
reviewed the manuscript, and the extent of coverage and many specific details
are the result of their comments and class interaction.

What I try to do here is discuss ideas of architecture and organization
generally to provide an overview of several immortal concepts. While specific
architectures and machine organizations are mentioned in the book, for exam-
ple, the IBM S5/370, IBM Series/1, IBM 8100, Sperry Rand UNIVAC 1100,
Cray Research CRAY-1, Digital Equipment Corporation VAX-11, Data Gen-
eral NOVA, INTEL 8080, and INTEL 8086, the book is not intended to de-
scribe specific machines but to use them as examples of architectural and organi-
zational concepts. The danger in using specific examples is that the concepts
they embody seem to age with the machines though the concepts are in fact
ageless. .

vi Introduction to Computer Architecture and Organization

There are two great challenges in undertaking a book of this type. One, of
course, is content. Naturally I hope that the content is well chosen, the omis-
sions not disqualifying, and the simplifications appropriate. Aside from con-
tent, the greatest challenge is sequence. Topics are so interrelated that it is
difficult to discuss many points without anticipating later ones. Where neces-
sary, brief characterizing introductions are offered in one area to support dis-
cussion in another. This leads to some repetition, but the idea is to give more
and more detail each time a topic is discussed. The sequence of chapters was
discovered dynamically in class; it has been changed many times, and I am now
confident that the conceptual flow of the book minimizes the temptation for
readers to look ahead.

HAroLD LORIN

New York
September 1982

CONTENTS

PART ONE ARCHITECTURE

1. Architecture, Organization, and Implementation

1.
2. Elements of an Architecture, §

NeMAw

Architecture, 3

2.1. Mode of Data Representation, 3

2.2. Size of the Basic Data Structure, 5

2.3. Addressing Conventions, 6
2.4. Register Model, 6

2.5. Instruction Set, 7

2.6. Interrupt Mechanism, 9
2.7. Control States, 9

2.8. Input/Qutput, 10

Organization, 10

Implementation, 11

Architecture versus Organization, 11
Languages and Language Processing, 12
Hardware/Software Interfaces, 13

2. Compilation

[N

R R N e

Introduction, 17

Initial Statement Processing, 17
Field Name Recognition, 18
Symbol Table and Operand Stack, 18
Statement Type, 19

Right-Hand Processing, 20
Intermediate Form, 20

Next Statement, 21

Code Generation, 21
Post-Compilation Processes, 25
Final Comment, 25

17

vii

viii

Introduction to Computer Architecture and Organization

3. Data Coding and Reference 27

1.
2.

3.

4.
s.

Data Declaration, 27
Data Modes and Representation, 27

2.1. Pure Binary Characteristics, 29
2.2. Binary-Coding Schemes, 30
2.3. Floating Point, 30

Addressable Units, 31

3.1. Basic Word Size, 32
3.2. Address Definition, 33
3.3, Word Sizes and Processor Type, 34

Nonscalar Representation, 34
Self-Describing Data, 35

4. Register Organization 37

1
1

1.

P A LN

9.
0.
1.

Registers, 37

Register and Register Model Characteristics, 38
Register Operand Referencing, 39

Operations on Registers, 41

Multiple Register Sets, 42

Operand Stacks, 43

Stacks and Compilation, 49

Some Example Operand Register Models, 52

8.1. CRAY-I, 52
8.2, UNIVAC 1100, 53
8.3. VAX-11, 54

Software Register Conventions, 54
Basic Control Registers, 54
Placement of Control Information, 55

5. Memory Addressing Conventions Ly

Pt p—

R L SRS

Addressing Conventions in Instructions, 57
Fundamental Issue, 57

Address Size Compression, 58

Fewer Addresses, 60

Mixed Addressing Forms, 61

Registers in Address Formation, 62
Indexing, 63

Page. Base, and Segment Addressing, 66
Segmentation, 68

Indirect Addressing, 69

Memory Protection, 70

Contents

6.

11.1. Protection Keys, 71
11.2. Protection Rings, 71

Instruction Sets

Rl ol o g

Instruction Set Organization, 74
Informal Groupings of Instructions, 74
Other Instruction Groupings, 79
Symmetric Instruction Sets, 79
Example Instruction Forms, 81

5.1. UNIVAC 1100, 81
5.2. Data General NOVA, 82
5.3. Other Formats, 83

7. Changes in Program Sequencing

1.
2,
3
4.

Sequence Alteration, 86
Branching, 86

Condition Code Logic, 89
Skip Logic, 92

8. Subroutine Linkage

9.

9 NA; AW =

Concept of a Subroutine, 95

Subroutine Linkage, 96

Basic Linkage Instruction, 96

Basic Stack Linkage Control, 99

Parameter Passing, 101

Activation Record, 102

Stacks, Parameters, and Activation Records, 103
Addressing and Linkage, 105

Interrupt Mechanisms and Control States

1.

it

Interrupt Mechanisms, 107

1.1. Introduction to Interrupt Response, 107
1.2. Interrupt Inhibition, 109

Variations in Interrupt Architecture, 109
General Description of S/370 Interrupt Architecture, 110

3.1. Interrupt Classes, 110

3.2. The S/370 Program Status Word. 111
3.3. Organization of Lower Memory, 113
3.4, Interrupt Response, 114

Other Interrupt Schemes, 115
Control States, 116

74

86

95

107

Introduction to Coraputer Architecture and Organization

10. Virtual Memory

1.
2.

3.

Concepts of Virtual Memory, 119
Linear Virtual Memory, 121

2.1. Basic Mechanisms, 122

2.2. Memory Space Management, 123

2.3. Address Formation in Paging Systems, 124
2.4. Page Faults, 125

2.5. Linear Virtual Memory and Protection, 127
2.6. Segmentation in Linear Virtual Memories, 127
2.7. Associative Memory Assist, 127

Alternative Architectural Concepts, 129

11. Input/Output

1.

Ne e W

8.
Bibli
12. The

1.
2.

S W

% =3

Input/Output, 132

Disk Characteristics, 134

Input/Qutput Architecture Features, 136
Basic Processor 1/0 Architecture, 137
Operating Systems Services, 140
Input/Qutput Supervisor Flow, 142

Control Languages, 143

Higher Levels of Input/QOutput Support, 145
ography, 146

Power of an Architecture

Concept of Architectural Power, 147
The Army-Navy Study, 148

2.1. Absolute Criteria, 149
2.2. Quantitative Criteria, 151

Measures of an Architecture, 154
Functional Instructions, 155
Architectural Comparisons, 156
Ideal Architecture, 158

6.1. Addressing and Memory Referencing, 159
6.2. Characteristics of Ideal Architecture, 159

Architecture, Compilability, and Design Complexity, 161

The Great Debate, 163
Level of an Architecture, 163

9.1. Support of an Operating System, 165
9.2. Extension Toward Higher-Level Languages, 166

Bibliography, 168

119

132

147

Contents xi

PART TWO ORGANIZATION AND IMPLEMENTATION

13. Concepts in Organization and Implementation 173

1. Introduction, 173
2. Organization and Implementation Decisions, 174

2.1. Width of Data Paths, 174

2.2. Degree of Circuit Sharing, 174

2.3. Definition of Specialized Units, 175
2.4. Parallelism of Functional Units, 175
2.5. Buffering and Queuing, 175

2.6. Prediction, 175

2.7. Underlying Techrology, 176

2.8. Functional Implementation, 176

3. Price/Performance Goals, 176 _
4. Architecture, Organization, and Price/Performance, 177

14. Basic Concepts of Instruction Execution 180

1. Basic Cycles, 180
2. Execution of an Instruction—Instruction Stages, 182
3. Instruction Stages and Machine Cycles, 186

15. Organization for Increased Performance 189

Organizational Approaches to Faster Machines, 189
Instruction Times, 190 '

Cycles Reduction by Stage Speedup, 190

Stage Redefinition, 191 '

Resequencing Decode and Address Formation, 192
Concluding Remarks, 195

S oA WN -

16. Extended Lookahead 197

Inter-Instruction Overlap, 197

Storing Values into Memory, 202

Memory Read and Write Contention, 204
Memory Reference Delays, 204

Increasing Lookahead, 206

Details of I/E Function and Relationship, 207
Buffering and Extended Lookahead, 210

LAl S o

N

17. Parallel Instruction Execution 214

1. Mudltiple Instruction Execution, 214
1. Considerations in Multipie E-Box Design, 215
3. Populations of E-Boxes, 216

xii Introduction to Computer Architecture and Organization

Delivery of Instructions to E-Boxes, 217
Delivery of Operands to E-Boxes, 218
Relationship between E-Boxes and Registers, 219
Instruction Sequencing, 220

Nonh

7.1. Sequencing Techniques, 221
7.2. Intersecting Memory References. 226

bl

Code Equivalence and Rearrangement, 227
9. Characteristics of E-Unit Designs, 228

9.1. Single-Level Unus, 228
9.2. Multilevel Pipeline Units, 229
10. Vector Manipulation, 231

11. Mulitiple I-Stream Machines, 233

18. Memory Organization 238

1. Basic Goals of Memory Design, 238
2. Enough Memory, 238
3. Memory Organization, 239

3.1 Banking, 240

3.2. Interleaving to Speed Memory Response, 241
Memory Lookahead, 242 ,
Memory Partitioning Techniques and Pracessor Lookahead, 243
Limits on Memory Partitioning, 243
Memory Times, 244
A Memory/Processor Interconnect Organization, 245
Alternative Interconnection Organization, 248

S IR LI A

19. Memory Hierarchies 251

1. Notion of Hierarchy, 251
2. Instruction Buffers, 253

2.1. Basic Buffer Fill Technique, 256)
2.2, Flexible Priority Driven Bufter Fill, 257
2.3, Short Loop Mode. 257

3. Br?nch Instructions and Instruction Buffering, 257
4. Operand Buffers, 259
5. Cache, 260

J.1. Cache Mapping and Loading, 262
5.2. Cache Contents Management, 265
5.3. Stores and Changes to Cache, 266
5.4. Some Concluding Comments, 266

Contents

6.
7.
8.

20. Inpu

XN A W -

10.

xiii

Other Hierarchical Notions. 267
instruction and Control Memories, 268
Fina) Comments on Memory, 269

t/Output Design 271

Basic Concepts, 271

. Programmed Input/Output, 272

Processor Overlap, 276

More Elaborate Input/Output Design, 278
Buffered Input/Output, 281

Direct Memory Access Organizations, 281
Multiple Units, 282

General-Purpose Channels, 284

Input/Output Processor Concepts, 286

Processor Support of Input/Qutput Functions, 288

21. Overview of Implementation 290

1

SrrswN

7.
8.
Bibli

Introductory Observations on Technology, 290

I.1. Physical Change.-290

1.2, Performance and ¥rice/Performance. 292
1.3. Storage, 292

1.4. Summary Remarks, 294

Computer Building Blocks, 294

Architecture, Design, and Impiementation, 296
Microprocessors and Microcomputers, 297

Basics of Implementing One Architecture with Another, 299
Considerations in Implementing One Architecture

with Another, 301

Microcode Types, 303

Extending an Architecture, 304

ography, 305

INDEX 367

PART ONE

ARCHITECTURE

Chapter 1

Architecture, Organization,
and Implementation

1. ARCHITECTURE

The exact meaning of the word architecture in the context of computers is a
little uncertain. In general, architecture refers to the visible characteristics of a
system as seen by a person or & program creating code capable of running on
the machine. It is common, however, to use the word to mean the view of a
machine shown by its assembly language. An assembly language is a low-level
programming language in which the basic characteristics of a computer system
are more directly represented than in a language like coBoL or FORTRAN. The
assembly language programmer is aware of memory locations used in the ma-
chine, the actual instructions of a machine, and possibly the general speed of
instructions. He* is not necessarily aware of the underlying organization of the
machine in terms of operational logical units or of the hardware technology
used in the construction of the machine.

The word architecture is frequently used to mean the visible characteristics
of only the element actually performing instructions, that is, the processor of a
computer system. Since a programmer may view other elements of a computer
system through the processor, architecture also more generaliy means the char-
acteristics of all the component elements of a system that might concern a
programmer working at machine level. These components include processor(s),
memory. and input/output subsystems. :

A proce.sor is a unit that interprets instructions and changes data in con-
formity with the instructions of a program. A computer may have one or more
processors either dedicated to the execution of specialized instructions or capa-
ble of performing all instructions. Memory is a device that holds instructions to
be executed and data to be operated on. Input/output subsystems are collec-
tions of units that connect processors and memories with the devices (1) that
interface with the outside world (printers, terminals, sensors, etc.) or (2) on

* Throughout this bodk "he™ is used to mean “he” or “'she.” This avoids the cumbersome “be/she.”

3

4

which large amounts of additional data or instructions are stored and from or

Introduction to Computer Architecture and Organization

to which data is moved to or from memory.

The word architecture is also vsed 1o suggest the relationships among var-
ious building block elements of hardware and software systems. A system may
be thought of as having several architectural ievels. Figure 1 shows a representa-
tion of architectural levels. Each rectangle represents a set of functions and the
horizontal lines are the interfaces between the functions. The first:part of this
book discusses the architectural level represented by the line labeled machine~
architecture interface. The second part of the book addresses the levels that

support this interfaeey 1.

Compiler .,
interface

|

Subsystem
interface

Operating

system interface

interface

* Machine architecture

Microcode

Control
circuits

Arithmetic
logic
circuits

e
control

and

Memory

controt
memory

110
devices

Figure 1.

Architectural levels.

instructions
registers
addressing

-Architecture, Organization, and Implementation . 5

.2.. [ELEMENTS OF AN ARCHITECTURE

From the point of view of a programmer looking at a computer system from an
architectural level, a system has a set of characteristics that define how data will
be represented and referenced, the operations that can be performed on data,
and other features that determine how sequences of operations must be exe-
cuted to achieve a computational result '

2.1. Mode of Data Representation

"This refers to the répresentation of valies in the procéssor and memory and the
‘mariner in which strings of binary digits should be intérpreted at differemt
points in the architecture. The representation of informaifon may be in either
_pure base 2 (binary) or éncoded form generically called the binary-coded deci-
“mal. There is also a form of scientific notation, called floating point, where
values and exponents may be represcuted separately in cither pure binary or
coded form. ' '
‘ ""Whe'n a value is'to be mdnipulatéd by a processor, the circuits of the proces-
“sor will be designed 10 treat the bits of that value as ejther pure binary, binary-
coded decimal, or floating point. For example, 2 unit designed 10 add binary
numbers will produce an erroneous result for the logic of a program if the data
presented to it is in binary-coded decimal form. As another example, a program
must know the mode of representation for various values printed on a system .
printer. Devices like printers ‘always require data to be in some coded decimal
form, which may not be the form in ‘which the data is arithmetically manipu-
lated in the processor. The program must issue instructions to put the data in
proper form for printing..

2.2. Size of the Basic Data Structure

This refers to the organizition of values in the memory of the system and in the
- processor. The basic architectural data structures are bits, bytes, characters, and
words.’ -

A computer system’'s memory is organized into locarions, which may be
visualized as elements in a one-dimensional array. Each element has a name, or
an address. Thus we speak of a memory having 4096 locations: each location
can be directly referenced according to its position on the list. For example,
there are memory locations 0600, 0001, 0602. . . ., 4094, 4095. When one of these
numbers appears in control circuits connected to memory either the contents
(the value that exists in the location) will be brought from memory 'to the
circuits of the processing unit or information in the processing unit wiil be
stored in the memory, depending on the work associated with the address.

Each location in a memory has a fixed size that repreSents the number of bits
(binary digits) held in that location. Thus we speak of machines with §, 16, 24,
‘and 32-bit memories. This describes the number of bits that will be transferred

