CAMBRIDGE TEXTS
IN APPLIED
MATHEMATICS 14




e ———————————————————— e

Scaling, self-similarity, and
intermediate asymptotics

Grigory Isaakovich Barenblatt

Emeritus G. 1. Taylor Professor of Fluid Mechanics,
Uneversity of Cambridge;

Fellow of Gonville and Caius College, Cambridge

CAMBRIDGE

UNIVERSITY PRESS
ZE W x L e 8



3 #: Scaling, Self-Similarity, and Intermediate Asymptotics
1€ #: G.L.Barenblatt

O R BE. R RR R

HORE &: HARABEHRASIRLE

B0 Rl . AbEHEEERIT

X 7 HREABHKRARIERAE JLRBRAE 1378 100010)
F & 124 711X1245 E? 3K: 17.5
HRRER: 2000 6 A

H# S ISBN 7-5062-4725-9/ O * 305

RRAREIZ: B 01-2000-0859

E i 68.00T

tth SF BB AR 2> B JE 5T B @ 3848 Cambridge University Press J@#07Eh
KIEMREEN K17,



Scaling, self-similarity, and
intermediate asymptotics




Cambridge Texts in Applied Mathematics

MANAGING EDITOR
D.G. Crighton, University of Cambridge

EDITORIAL BOARD

M. Ablowitz, University of Colorado; J.-L. Lions, College de France;
A. Majda, New York University; J. Ockendon, University of Oxford;
E.B. Saff, University of South Florida

Maximum and Minimum Principles
M.J. Sewell

Solitons
P.G. Drazin and R.S. Johnson

The Kinematics of Mixing
J.M. Ottino

Introduction to Numerical Linear Algebra and Optimisation
Philippe G. Ciarlet

Integral Equations
David Porter and David S.G. Stirling

Perturbation Methods
E.J. Hinch

The Thermomechanics of Plasticity and Fracture
Gerard A. Maugin

Boundary Integral and Singularity Methods for Linearized Viscous Flow
C. Pozrikidis

Nonlinear Wave Processes in Acoustics
K. Naugolnykh and S. Ostrovsky

Nonlinear Systems
P.G. Drazin

Stability, Instability and Chaos
Paul Glendinning

Viscous Flow
H. Ockendon and J.R. Ockendon

Applied Analysis of the Navier-Stokes Equations
Charles R. Doering and J.D. Gibbon



PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge cB2 1rP, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge cs2 2ru, United Kingdom
40 West 20TH Street, New York, NY 10011—4211, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1996

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 1996

This edition of Scaling, Self-Similarity and Intermediate Asymptotics by
Grigory Barenblatt is published by arrangement with the Syndicate of the
Press of the Press of University of Cambridge, Cambridge, England.

Licensed edition for sale in the People’s Republic of China only. Not for
export elsewhere.

ISBN 0 521 43516 1 hardback
ISBN 0 521 43522 6 paperback



To the glowing memory of his beloved parents,

Dr. Nadezhda Veniaminovna Kagan, physician—virologist,
heroically lost for the sake of the healthy future of humanity,

and
Dr. Isaak Grigorievich Barenblat, physician—endocrinologist,

the author dedicates his work.



Preface

Scaling (power-law) relationships have wide application in science and
engineering. Well-known examples of scaling relations are the following
(we will discuss them later in detail):

G.1. Taylor’s scaling law for the shock-wave radius r; after a nuclear

1‘
Et2 1/5
rp=|— ;
= (%)

the scaling law for the velocity distribution u near a wall in a turbulent

explosion,

shear ﬂow,1
u = Ay™;

the scaling law for the breathing rate R of animals,§
R = AW™,;

and many others.

A very common view is that these scaling or power-law relations are
nothing more than the simplest approximations to the available exper-
imental data, having no special advantages over other approximations.
It is not so. Scaling laws give evidence of a very deep property of the
phenomena under consideration — their self-similarity: such phenom-
ena reproduce themselves, so to speak, in time and space. Self-similar

f E explosion energy; t, time after explosion; pg, air density.
v distance from the wall; A, n, constants.
W body mass of an animal; A, n constants.
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phenomena entered mathematical physics rather early, perhaps with the
famous memoir of Fourier (1822) on the analytical theory of heat con-
duction. In this he arrived at a ‘source-type’ solution’

A T 2
6z, t)=—f(— 1, =¢e-§/4 A= Const
(1) ﬂf(ﬁ) f©)=e
to the heat conduction equation

8,0 =92,0.

Subsequently the phenomena under consideration, and the equations en-
tering their mathematical models, became more and more complicated
and very often nonlinear. Obtaining self-similar solutions was consid-
ered as a success, particularly in the pre-computer era. Indeed, the
construction of such solutions always reduces to solving the boundary-
value problems for ordinary, not partial, differential equations, which
was considered as a substantial simplification. Moreover, in ‘self-similar’
coordinates 8+/t, £/t (and analogous coordinates in other problems),
self-similar phenomena become time independent. This gives important
evidence of a certain type of stabilization. Thus very often obtaining
a self-similar solution was the only way to understand the qualitative
features of the phenomena.

The exponents of the independent variables z, t in self-similar vari-
ables such as 8v/%, /vt in the heat conduction problem mentioned
above were obtained at the outset in some simple way giving no spe-
cial trouble to the researcher, often dimensional analysis. Dimensional
analysis is merely a simple sequence of rules based on the fundamen-
tal covariance principle of physics: all physical laws can be represented
in a form equally valid for all observers. Such classical self-similarities
were discussed and summarized in a book by Sedov (1959) and in a
monographic review by Germain (1973), in which a general approach to
problems leading to such solutions was also discussed.

In fact, the situation changed drastically after the paper by Guderley
(1942), in which a solution to the problem of a very intense implosion
(a converging spherical or cylindrical shock wave) was obtained, and the
papers by von Weizsécker (1954) and Zeldovich (1956) treating the plane
analogue of the implosion wave problem, the problem of an impulsive

T

Here @, z, t are the temperature, the spatial coordinate, and time. This solution is
remarkable for two reasons. Firstly, the temperature 8, a function of two variables
z, t, is represented via a function of one variable z/+/t. Furthermore, according to
this solution the temperature distributions at various times can be obtained one
from another by a similarity transformation: the solution remains similar to itself.



Preface xiii

loading. In these problems a delicate analytical procedure, qualitative
investigation of the portrait in a phase plane, was needed to obtain the
power n in which the time enters the self-similar variable z/t®. These
powers appeared generdlly speaking to be certain transcendental num-
bers rather than simple fractions as for classical self-similarities. In
fact solutions with such ‘anomalous’ dimensions had appeared for dif-
ferent variables even earlier. I am referring to the fundamental papers
by Kolmogorov, Petrovsky, and Piskunov (1937), and by Fisher (1937),
devoted to the propagation of an advantageous gene, and by Zeldovich
and Frank-Kamenetsky (1938a, b), dealing with flame propagation in
gases. In these papers the wave-type solutions 8(xz — At) of the nonlinear
parabolic equation
0,0 = 82_0 + f(6)

were considered, and the wave phase speed A has been calculated by
a complicated analytical procedure: phase-plane portrait investigation.
Transforming the variables £ = In £,t = In 7 one arrives at the same
problem of determining the exponent of 7 in the self-similar variable
g/

An important question arose: what is the real nature of such a dif-
ference in self-similar solutions? To understand that, in the papers of
Barenblatt and Sivashinsky (1969, 1970) two special problems were con-
sidered, containing a parameter that entered to the problem’s formula-
tion naturally. For a single value of this parameter a classical self-similar
solution appeared, in which all powers were obtained from dimensional
considerations. However, for all other values of the parameter anoma-
lous dimensions appeared as continuous functions of the parameter; they
are obtained from the solution to a nonlinear eigenvalue problem. These
results allowed one to understand the fundamental nature of the dif-
ference between the two types of self-similar solution mentioned above.
Indeed, self-similar solutions are always ‘intermediate asymptotics’ to
the solutions of more general problems, valid for times, and distances
from boundaries, large enough for the influence of the fine details of the
initial and/or boundary conditions to disappear, but small enough that
the system is far from the ultimate equilibrium state. So, the reason
for the difference is the character of these intermediate asymptotics. If
an asymptotics is represented by a function that tends to a finite limit
when approaching the self-similar state, self-similarity of the first kind
appears. If, however, a finite (different from zero) limit does not exist,
but the asymptotics is a power-type (scaling) one, with the exponents de-
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pending on the fine details of the analytical properties of pre-self-similar
behaviour, self-similarity of the second kind occurs. So, it became clear
how anomalous, transcendental dimensions appear in self-similar solu-
tions. It is also the case that only a power-type asymptotics preserves
self-similarity.

Independently but later an activity started in theoretical physics,
basically in quantum field theory and in the theory of phase transi-
tions in statistical physics, related to the scaling and renormalization
group. Anomalous dimensions entered the language of physicists. The
names and works of Stiickelberg and Peterman (1953), Gell-Mann and
Low (1954), Bogolyubov and Shirkov (1955), Kadanoff (1966; see also
Kadanoff et al, 1967), Patashinsky and Pokrovsky (1966), and Wilson
(1971), as well as the books by Bogolubov and Shirkov (1959), Ma
(1976), Amit (1989), and Goldenfeld (1992) should be mentioned. It
is essential to emphasize, however, that in contrast with the researchers
in applied mechanics mentioned above, researchers in theoretical physics
considered problems where rigorous mathematical formulations such as
initial and/or boundary value problems for partial differential equations
were lacking.

Rather early it became clear that the concepts of intermediate asymp-
totics developed in applied mechanics and the concepts of scaling and
renormalization group developed in theoretical physics are closely re-
lated. This relationship was emphasized in the author’s first book con-
cerning this subject (Barenblatt, 1979), the Foreword to which, by Acad.
Ya.B. Zeldovich, follows this Preface; in that book, theoretical physicists
were invited to look at how the approach of intermediate asymptotics can
work in problems previously considered by the renormalization group
approach.

In a remarkable series of works by N. Goldenfeld, Y. Oono, O. Martin,
and their students (see the book by Goldenfeld, 1992) several problems
in continuum mechanics (filtration, elasticity, turbulence, etc.) which
had been solved previously by the method of intermediate asymptotics
were solved by the traditional renormalization group method. Moreover,
on the one hand using the singular expansion method widely applied in
theoretical physics (e-expansion) Goldenfeld, Oono and their colleagues
were able to obtain some instructive and useful approximate solutions
to these problems. On the other hand, they obtained by the method of
intermediate asymptotics the solutions to several problems of statistical
physics, solved previously by the renormalization group approach.

These important works helped to represent in final form the renor-
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malization group approach from the viewpoint of intermediate asymp-
totics. In particular it appeared useful to give a proper definition of the
renormalization group using the concept of intermediate asymptotics.
Ultimately the works by Goldenfeld and his colleagues were among the
basic stimuli for me to write this book. Of course, in this writing I have
used essential materials from my previous books devoted to this subject
(Barenblatt, 1979, 1987), so the continuity is completely preserved.

I want to express in conclusion my deep gratitude to the memory of my
great mentors, A.N. Kolmogorov and Ya.B. Zeldovich whose approach
in particular to self-similarities and intermediate asymptotics greatly
influenced my views.

I want to thank Professor D.G. Crighton, FRS, for his kind offer to
publish this book in the series under his editorship at Cambridge Uni-
versity Press. I am pleased to express my deep gratitude to him, to
Professor G.K. Batchelor, FRS, and to Professor H.K. Moffatt, FRS, for
the honour and pleasure of writing this book here at the Department
of Applied Mathematics and Theoretical Physics in Cambridge. I am
grateful to Professor M.D. van Dyke for his valuable advice. I thank
Miss Sarah Kirkup for her help in preparing the manuscript.
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Foreword

Professor Grigorii Isaakovich Barenblatt has written an outstanding

book that contains an attempt to answer the very important question

of how to understand complex physical processes and how to interpret
- results obtained by numerical calculations.

Progress in numerical calculation brings not only great good but also
notoriously awkward questions about the role of the human mind. The
human partner in the interaction of a man and a computer often turns
out to be the weak spot in the relationship. The problem of formu-
lating rules and extracting ideas from vast masses of computational or
experimental results remains a matter for our brains, our minds.

This problem is closely connected with the recognition of patterns.It is
not just a coincidence that in both the Russian and English languages the
word ‘obvious’ has two meanings — not only something easily and clearly
understood, but also something immediately evident to our eyes. The
identification of forms and the search for invariant relations constitute
the foundation of pattern recognition; thus, we identify the similarity of
large and small triangles, and so on.

Let us assume now that we are studying a certain process, for example
a chemical reaction in which heat is released and whose rate depends
on temperature. For a wide range of parameters and initial conditions,
a completely definite type of solution is obtained — flame propagation.
The chemical reaction occurs in a relatively narrow region separating
the cold combustible substance from the hot combustion products; this
region moves relative to the combustible substance with a velocity that
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is independent of the initial conditions. (Of course, the very occurrence
of combustion depends on the initial conditions.)

This result can be obtained by direct numerical integration of the
partial differential equations that describe the heat transfer, diffusion,
chemical reaction, and (in some cases) hydrodynamics. Such a com-
putational approach is difficult; the result is obtained in the form of a
listing of quantities such as temperature and concentration as functions
of temporal and spatial coordinates. To make manifest the flame prop-
agation, i.e., to extract from the mass of numerical material the regime
of uniform temperature propagation, T(x — ut), is a difficult problem!
It is necessary to know the type of the solution in advance in order to
find it; anyone who has made a practical attempt to apply mathematics
to the study of nature knows this truth.

The term ‘self-similarity’ was coined and is by now widespread: a so-
lution T'(x,t1) at a certain moment ¢; is similar to the solution T'(x, to)
at a certain earlier moment. In the case of uniform propagation con-
sidered above, similarity is replaced by simple translation. Similarity is
connected with a change of scales:

tl n tl m
- (&) (@) w)
T = o(t)¥(x/£(¢)) -
In geometry, this type of transformation is called an affine transforma-
tion. The existence of a function ¥ that does not change with time
allows us to find a similarity of the distributions at different moments.

Barenblatt’s book contains many examples of analytic solutions of
various problems. The list includes heat propagation from a source in the
linear case (for constant thermal conductivity) and in the nonlinear case,
and also in the presence of heat loss. The problem of the hydrodynamic
propagation of energy from a localized explosion is also considered. In
both cases, the problem in its ordinary formulation — without loss -
was solved many years ago; in these problems the dimensions of the
constants that characterize the medium (its density, equations of state,
and thermal conductivity) and the dimensions of energy uniquely dictate
the exponents of self-similar solutions.

However, with properly introduced losses the problems turn out to
be essentially different. If dE/dt = —aE%/2/R5/2 dR/dt = BE'/2/R3/?
(E being the total energy referred to the initial density of the gas, R
the radius of the perturbed domain and ¢ the time) so that dE/dR =

or
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—+vE/R, then the conservation of energy does not hold:
E~ R, E=EyRJR™" # const,;

however, self-similarity remains.

The dimensionless numbers &, 3, and v depend on the functions de-
scribing the solution, but the equations that determine these solutions
contain indeterminate exponents. Mathematically we have to deal with
the determination, from nonlinear ordinary differential equations and
their boundary conditions, of certain numbers that can be called eigen-
values.

The new exponents in the problem are not necessarily integers or
rational fractions; as a rule they are transcendental numbers that depend
continuously on the parameters of the problem, including the parameters
of energy loss. Thus arises a new type of self-similar solution, which we
shall call the second type, reserving the title of first type for the case
where naive dimensional analysis succeeds.

An important point arises here. The solution does not describe the
point source asymptotically: if Ry (the value of R at t = 0) is taken to
be equal to zero, then it must necessarily be that Ey = oo for t = Q,
which is physically inconsistent. Hence the new solution is considered as
an intermediate asymptotics. We assume that up to a certain finite time
t, there is no loss. At this moment, when the radius of the perturbed
domain reaches the finite value Ry, we switch on the loss. Or, to be
more general, we can start with a finite energy E created by some other
means, that has already spread out to the finite radius Ry. It is assumed
that asymptotically, for sufficiently large time, the solution assumes a
self-similar form corresponding to the given loss.

We want to emphasize the asymptotic character of the self-similar
solution for t 3> t3. In nonlinear problems, exact special solutions some-
times appear to be useless: since there is no principle of superposition,
one cannot immediately find a solution of the problem for arbitrary ini-
tial conditions.

Here asymptotic behaviour is the key that partially plays the role of
the lost principle of superposition. However, for arbitrarily given initial
conditions this asymptotic behaviour must be proved. The problem is
difficult, and in many cases numerical computations give only a substi-
tute for rigorous analytic proof.

The preceding arguments may seem unusual in a Foreword: but I
wanted, using the simplest examples, to introduce the reader as quickly
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as possible to the advantages and difficulties of the new world of solutions
of the second kind.

There are also other types of solutions, among which convergent spher-
ical shock waves are the most important. In this case there is no exter-
nal loss, but the region in which self-similarity holds is contracting; it it
therefore impossible to assume that the entire energy is always concen-
trated in the shrinking region, and this energy in fact decreases according
to a power law, since part of the energy remains in the exterior regions
of the gas. Again it is necessary to find the exponents as eigenvalues of
a nonlinear operator. :

The specific character of this class of equations is connected with the
finiteness of the speed of sound; the point where the phase velocity of
propagation of a self-similar variable is equal to the velocity of sound
plays a decisive role in the construction of the solution.

Barenblatt also discusses in his book another problem of analogous
type: the problem of a strong impulsive load in a half-space filled with
gas. This problem abounds in paradoxes. In particular, why do the
laws of conservation of energy and momentum not make it possible to
determine the exponents? The answer to this question is contained
in chapter 4, and it would be against the rules to give it here in the
Foreword.

Problems involving the nonlinear propagation of waves on the surface
of a heavy fluid, described by the Korteweg—de Vries equation, give a
remarkable example. Here there are long-established and well-known
solutions describing solitary waves (called ‘solitons’), propagating with
a velocity dependent on the amplitude. This example is remarkable in
that there exist theorems proving the stability of solitons even after their
collisions, and theorems determining the asymptotic behaviour of initial
distributions of general type, which are transformed into a sequence of
solitons. At first suggested by numerical computations, these properties
are now rigorously proved by analytic methods of extraordinary beauty.
In these solutions all the properties of ideal self-similar solutions of the
second kind appear.

In some sense the problems of turbulence, considered at the end of
the book, differ from those mentioned above. These are farther from my
interests and I will not dwell on them here. A complete outline of all
that is contained in the book can be found in the Table of Contents and
should not be sought in the Foreword.

We shall now return to the nature of the book as a whole; we shall
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not hesitate to repeat for the general situation some considerations that
have already been presentéd above in connection with simple examples.

The problems are chosen carefully. Each of them taken separately
is a pearl, important and cleverly presented. In the solution of many
of the problems the role of the author was essential, and this gives to
the presentation the flavour of something lived. But I must emphasize
that the importance of this book far exceeds its value as a collection of
interesting special examples; from the special problems considered, very
general ideas develop.

Most of the problems are nonlinear. What is the use of special so-
lutions if there is no principle of superposition? The fact is that as a
rule these special solutions represent the asymptotics of a wide class of
other more general solutions that correspond to various initial condi-
tions. Under these circumstances the value of exact special solutions
increases immensely. This aspect of the question is reflected in the title
of the book in the words ‘intermediate asymptotics’. The value of so-
lutions as asymptotics depends on their stability. The questions of the
stability of a solution and of its behavior under small perturbations are
also considered in this book; in particular, there is presented a rather
general approach to the stability of invariant solutions developed in a
paper by Barenblatt and myself.

The very idea of self-similarity is connected with the group of trans-
formations of solutions. As a rule, these groups are already represented
in the differential (or integro-differential) equations of the process. The
groups of transformations of equations are determined by the dimensions
of the variables appearing in them; the transformations of the units of
time, length, mass, etc. are the simplest examples. This type of self-
similarity is characterized by power laws with exponents that are simple
fractions defined in an elementary way from dimensional considerations.

Such a course of argument has led to results of immense and perma-
nent importance. It is sufficient to recall the theory of turbulence and
the Reynolds number, of linear and nonlinear heat propagation from a
point source, and of a point explosion. Nevertheless, we shall see that
dimensional analysis determines only a part of the problem, the tip of
the iceberg; we shall call the corresponding solutions solutions of the first
kind, as mentioned above. We shall reserve the name selutions of the
second kind, for the large and ever growing class of solutions for which
the exponents are found in the process of solving the problem, anal-
ogously to the determination of eigenvalues for linear equations. For



