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PREFACE

This book presents some combinatorial algorithms common in computer
science and operations research. The presentation is to stress intuitive ideas in an
algorithm and to illustrate it with a numerical example. The detailed implementa-
tion of the algorithms in PASCAL are in a separate manual. No background in
linear programming and advanced data structure is needed. Most of the material
can be taught to undergraduates while more difficult sections are only suitable to
graduate students. Chapters can be read somewhat independently so that the
instructor can select a subset of chapters for his course. This book should also be
useful as a reference book since it contains much material not available in Jour-
nals or any other books.

Chapters One and Two can be used in a one quarter course in network
theory or graph algorithms. Chapter One goes in-depth into several shortest-path
problems and introduces a decomposition algorithm for large sparse networks.
Chapter Two deals with network flows, and contains a large amount of new
material, such as the algorithms of Dinic and Kazanov which have never
appeared in English before, the optimum communication spanning tree and the
description of PERT in terms of longest paths and cheapest cuts. Also in Chapter
Two is a section on multi-terminal flows where a subset of nodes are terminal

nodes.

Chapters Three and Four cover dynamic programming and backtrack
(branch and bound) which are two general optimization techniques. Both topics
are usually not covered in detail in computer science departments. Chapter Three
introduces the concept of dynamic programming by using examples carefully
selected to show the variety of problems solvable by dynamic programming.
After the knapsack problem is solved, the periodic nature of the solutions is
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discussed. (The solution to the two-dimensional knapsack problem is based on
the papers of Gilmore and Gomory.) This chapter ends with a brief discussion of
the work of Dr. F.F. Yao. Chapter Four includes standard material on backtrack-
ing as well as a detailed description of a—g pruning in a game tree. It also gives
an example of the Monte Carlo technique of estimating the size of the decision

tree.

Chapters Five and Six contain a large amount of new material which should
be of interest to computer scientists and operations researchers. Chapter Five
introduces the Huffman algorithm, the Hu-Tucker algorithm, including a new
reconstruction phase, and the generalization of both algorithms to regular cost
functions. This generalization is based on the paper by Hu, Kleitman and
Tamaki. Chapter Five also describes and illustrates the Garsia-Wachs construc-
tion. Chapter Six deals with heuristic algorithms. It contains the one-point
theorem of Magazine, Nemhauser and Trotter and the new bin-packing algorithm
of Yao. The treatment of job-scheduling for the tree-constraint is a revision of
the author’s paper published in 1961.

The subject of Chapter Seven is matrix multiplications. This chapter con-
tains two combinatorial results, the Strassen’s result on the multiplication of two
large matrices and the results on the optimum order of multiplying a chain of
matrices of different dimensions. Although the problem of optimum order can
be solved by an O(n?) algorithm based on dynamic programming, the problem
can now be solved by an O(nlogn) algorithm based on combinatorial insights.
Since the subject of finding the optimum order is a book by itself, we give the
main theorems on the subject and a heuristic O(n) algorithm which has a 15%
error bound.

The final chapter, Chapter Eight, introduces the concepts of NP-complete
problems. The purpose here is to give the reader some intuitive notions but not
a complete treatment since a book has been published dealing with this subject in
detail.

It is a pleasure to thank all persons who helped to make this book possible.
To the National Science Foundation and Dr. J. Chandra and Dr. P. Boggs of the
U. S. Army Research Office for their financial help. To Drs. F. Chin, S. Dreyfus,
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F. Ruskey, W. Savitch, A. Tucker, M. Wachs, F. Yao for reading various parts of
the drafts. To Professor L. E. Trotter, Jr. and Professor Andrew Yao for reading
the next-to-final version of the whole book and made many valuable suggestions.
To Mrs. Mary Deo for her effort in editing the earlier versions. To
Mrs. Annetta Whiteman for her excellent technical typing of so many versions of
the book. To Ms. Sue Sullivan, for skilifully converting the material into the book
formats using the UNIX system. To Mr. Y.S. Kuo for preparing the index and
writing parts of the manual. And last but most to Dr. Man-Tak Shing, for writing
the manual and his technical and general assistance throughout the writing and

production,

La Jotla, Cglifomia

Qctober 19, 1981

T. C. Hu
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CHAPTER 1. SHORTEST PATHS

There is no shortest path to success.

§ 1.1 GRAPH TERMINOLOGY

When we try to solve a problem, we often draw a graph. A graph is often the
simplest and easiest way to describe a system, a structure, or a situation. The
Chinese proverb "A picture is worth one thousand words" is certainly true in
mathematical modeling. This is why graph theory has a wide variety of applica-
tions in physical, biological, and social sciences. Due to the wide variety of appli-
cations, we also have diverse terminology. Papers on graph theory are full of
definitions, and every author has his own definitions. Here, we introduce a
minimum number of definitions which are intuitively obvious. The notation and
terminology adopted here is similar to that of Knuth [18).

A graph consists of a finite set of vertices and a set of edges joining the ver-
tices. We shall draw small circles to represent vertices and lines to represent
edges. A system or a structure can often be represented by a graph where the
lines indicate the relations among the vertices (the elements of the system). For
example, we can use vertices to represent cities and edges to represent the high-
ways connecting the cities. We can also use vertices to represent persons and
draw an edge joining two vertices if the two persons know each other.

The reader should keep in mind that graph theory is a theory of relations,
not a theory of definitions; however, a minimum number of definitions is needed
here. Vertices are also called nodes, and edges are also called arcs, branches, or
links. We usually assume that there are n vertices in the graph G and at most
one edge joining any two vertices and there is no edge joining a node to itself.
The vertices are denoted by V; (i = 1,2,...,n) and the edge joining V; and V; is
denoted by ;. Two vertices are adjacent if they are joined by an edge (thg two
vertices are also called neighbors); two edges are adjacent if they are both incident
to the same vertex. A vertex is of degree Kk if there are k edges incident to it.

A sequence of vertices and edges
(V1,€12,V2,€23,V3,...,Vi)

is said to form a path from V; to V. We can represent a path by only its vertices
as
(Vlavza"'9vn)

or by only the edges in the path as
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(e12, €23, -, en—l,n)-

A graph is connected if there is a path between any two nodes of the graph.
A path is of length k if there are k edges in the path. A path is a simple path if all
the vertices Vy, V,, ..., Vo1, V, are distinct. If V| = V_, then it is called a cycle.
In other words, a cycle is a path of length three or more from a vertex to itself.
If all vertices in a cycle are distinct, then the cycle is a simple ¢ycle. Unless oth-
erwise stated, we shall use the word "path" to mean a simple path, "cycle" to
mean a simple cycle, and "graph” to mean a connected graph.

If an edge has a direction (just like a street may be a one-way street), then
it is called a directed edge. 1If a directed edge is from V; to V;, then we cannot fol-
low this edge from V; to V. Thus in the definition of a path, we want an edge to
be undirected or to be a directed edge from V; to V;,;. In all other definitions,
the directions of edges are ignored. A graph is called a directed graph if all edges
are directed and a mixed graph if some edges are directed and some are not. A
cycle formed by directed edges is called a directed cycle (or circuit). A directed
graph is called acyclic if there are no directed cycles. The words "graph" and
"edge" are used for an undirected graph and an undirected edge throughout this
section.

A tree is a connected graph with no cycles. If a graph has n vertices, then
any two of the following conditions characterize a tree and automatically imply the
third condition.

1.  The graph G is connected.
2.  The graph has n-1 edges.
3.  The graph contains no cycles.

We shall denote a graph by G = (V; E) where "V" is the set of nodes or
vertices, and "E" is the set of edges in the graph. A graph G = (V'; E') is a sub-
graphof G = (V; E)if VVC Vand E C E.

A subgraph which is a tree and which contains all the vertices of a grggh is
called a spanning tree of the graph. We shall illustrate these intuitive definitions

of graph theory in Figure 1.1.

Do

Figure 1.1
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There are three paths between V; and Vs, namely (Vy, V,, V4, Vi), (V,, V,,
Vs), (V,, V3, V,, Vi), The edges €4, €14, €34, and €45 form a spanning tree and
so do the edges €;,, €1, €34, and e4s. Also, we may pick €3, €3, €34, and eys to
be the spanning tree. Here the node V, is of degree 3 in the graph G but is of
degree 2 in the last spanning tree. If the edge e4s was directed from V4 to Vs,
then there are still three paths from V, to Vs but none from Vs to V.

In most applications, we associate numbers with edges or vertices. Then
the graph is called a nerwork. All the definitions of graph theory apply to net-
works as well. In network theory, we usually use "nodes" and "arcs" instead of
"vertices” and "edges".

§1.2 SHORTEST PATH

One of the fundamental problems in network theory is to find shortest paths in a
network. Each arc of the network has a number which is the length of the arc.

In most cases, the arcs have positive lengths, but the arcs may have nega-
tive lengths in some applications. For example, the nodes may represent the vari-
ous states of a physical system, where the length associated with the arc e
denotes the energy absorbed in transforming the state V; to the state V. An arc
with negative length then indicates that energy is released in transforming the
state V; into the state V;. If the total length of a circuit or cycle is negative, we
say that the network contains a negative circuit.

The length of a path is the sum of lengths of all the arcs in the path. There
are usually many paths between a pair of nodes, say V, and V,, but a path with
the minimum length is called a shortest path from V; to V,.

The problem of finding a shortest path is a fundamental problem and often
occurs as a subproblem of other optimization problems. In some applications, the
numbers associated with arcs may represent characteristics other than lengths and
we may want optimum paths where optimum is defined by a different criterion.
But the shortest path problem is the most common problem in the whole class of
optimum path problems. The shortest path algorithm can usually be modified
slightly to find other optimum paths. Thus we shall concentrate on the shortest
paths.

If we denote a path from V; to Vi by (V|, V,, ..., V|), then e;;;; must be
either a directed arc from V; to Vi;; or an undirected arc joining V; and V;,
G = 1,...,k-1). In most applications, we can think of an undirected arc between
V; and V; as two directed arcs, one from V; to V; and the other from V; to V;.
We usually are interested in three kinds of shortest-path problems:
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(1) The shortest path from one node to another.
(2) The shortest paths from one node to all the other nodes.
(3) The shortest paths between all pairs of nodes.

Since all algorithms solving Problem (1) and Problem (2) are essentially the
same, we shall discuss the problem of finding shortest paths from one node to all
other nodes in the network.

The problem of finding shortest paths is well-defined if the network does
not contain a negative cycle (or a negative circuit). Note that a network can have
some directed arcs with negative length and yet does not contain a negative cycle.
We shall first study the case that all arcs have positive length.

Let us denote the length of the arc from V; to V; by d;;, and assume that
d; >0 for all i,j condition 1
di; &= dj; for some i,j condition 2
d;j +dj < dix  for somei,j,k condition 3

For convenience, we assume that d;; = oo if there is no arc leading from V;
to Vjand d;; = O for all i.

Condition 3 makes the shortest-path problem nontrivial. Otherwise, the
shortest path from V; to V; consists of the single arc ¢;;.

Assume that there are n nodes in the network and we want the shortest
paths from Vg to V; (i = 1, 2, ..., n-1). If there are two or more shortest paths
from Vj to a node, then any one path is equally acceptable.

Usually, we would like to know the length of a shortest path as well as the
intermediate nodes in the path.

Let us make some observations first. Let P, be a path from V, to V,,
where V; is an intermediate node on the path. Then the subpath from V, to V;
contains fewer arcs than the path P,. Since all arcs have positive lengths, the
subpath must be shorter than P,. We state this as observation 1.

Observation 1. The length of a path is always longer than the length of any of its
subpaths. (Note this is true only when all arcs are positive.)

Let V; be an intermediate node on the path P, (from V, to V,). If the path
P, is a shortest path, then the subpath from V; to V; must irself be a shortest
path. Otherwise, a shorter path to V; followed by the original route from V; to V;
constitutes a path shorter than P,. This would contradict that P, is a shortest
path. We state this as observation 2.

Observation 2. Any subpath (of a shortest path) must itself be a shortest path.
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(Note that this does not depend on arcs having positive lengths.)

Observation 3. Any shortest path contains at most n-1 arcs. (This depends on arcs
not forming negative cycles and that there are n nodes in the network.)

Based on these three observations, we can develop an algorithm to find the
shortest paths from V), to all the other nodes in the network.

Imagine that all shortest paths from V, to all other nodes have been ordered
according to their path lengths. For convenience of discussion, we can rename the
nodes such that the shortest path to V. is the shortest among all shortest paths. We
shall write

PSP SP< .. S Py
to denote that the lengths of these paths are monotonically increasing.

The algorithm will find P, first, P, second,..., until the longest of the shor-
test paths is found.

Let us motivate the ideas behind the algorithm. How many arcs are in the
path P,? If P, contains more than one arc, then it contains a subpath which is
shorter than P; (observation 1). Thus P; must contain only one arc.

If P, contains more than k arcs, then it contains at least k intermediate
nodes on the path. Each of the subpaths to an intermediate node must be shorter
than Py, and we would have k paths shorter than Py, a contradiction. Thus the
shortest path P, contains at mostk arcs. We shall state this as observation 4.

Observation 4. The shortest path P, contains at most k arcs.

To find P, we need only examine one-arc paths; the minimum among these
must be P;.

To find P,, we need only one-arc or two-arc paths. The minimum among
these must be P,. If P, is a two-arc path where the last arc is e;; (j%1), then the
single arc eg; is a subpath of P, and hence shorter than P,. Thus, the path P, must
be either a one-arc path or a two-arc path where the arc e, is the last arc on the
path P,.

In what follows, we shall write numbers on the nodes and call these
numbers labels. There are two kinds of labels, temporary and permanent labels.
The permanent label on a node is the true shortest distance from the origin Vj to
that node. A temporary label is the length of a path from the origin to that node.
Since the path may or may not be a shortest path, a temporary label is an upper
bound on the true shortest distance.

When we search for P;, we write on every node V; the length of the arc dy;.
These are called the temporary labels of V; (since these labels may be changed
later). Among all the temporary labels, we select the minimum and change the
label to be permanent. Thus we have V; permanently labelled. (A node
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permanently labelled is called a permanent node.)

To find P,, we do not have to find all two-arc paths; only those where the
first arc is eg;. All the lengths of one-arc paths have already been written on the
nodes as temporary labels. So we can compare d,; (the length of one arc) with
dg; + dj; (the length of the two-arc path), and the minimum of the two is writ-
ten on V; as the temporary label of V;. Then among all temporary labels, the
minimum is P,.

The permanent label on a node V; indicates the true shortest distance from
Vo to V;. The temporary label on a node V; indicates either the distance of the
arc eg; or the distance of a path from V, to a permanent node V; followed by the
arc €;;.

Imagine that all arcs of the network were colored green. Whenever an arc
is used in a shortest path, we recolor it brown. So we use one brown arc to reach
V|, one or two brown arcs to reach V,, ..., at most k brown arcs to reach V,.
(The choice of color is such that the brown arcs form a tree, see EX. 2.) We see
that the path Py, cannot contain nodes with temporary labels as intermediate
nodes. Thus we can limit our search to those paths consisting of a sequence of
brown arcs followed by one green arc reaching the node V,,,. Two or more
green arcs indicate a subpath of shorter distance than P,;.

To find the path P,,; containing one green arc and possibly some brown
arcs, we limit our search to the neighbors of Vi, Vi, ..., V.. The search is made
easy if we adopt the following rule:

Whenever a node V; receives a permanent label say 1 , we shall check all
temporary labels of neighbors V; of V; to see if 1 +d;; is less than the current
temporary label of V;. If it is less we shall replace the current temporary label by
the smaller value. If not, we leave the temporary label unchanged.

To find Py,,, we just find the minimum of temporary labels of all neighbors
of Vy, V, ...,V and change the minimum to a permanent label.

Now we can formalize the algorithm and use it in a numencal example. We
will use /; to denote the temporary shortest distances and l to denote the true
shortest distances.

Dijkstra’s Algorithm

Step 0. All nodes V; receive temporary labels / with value equal to dy;
(i = 1,2,...,n-1). For convenience, we can take dj; = oo if there is no
arc joining Vg and V;.

L1
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Set £, =dy; (i = 1,...,n-1)
Step 1. Among all temporary labels /

Pick 4 = ™% 1.
Change / to 1: .
Stop if there is no temporary label left.

Step 2. Let V. be the node that just received a permanent label in Step 1.
Replace all temporary labels of the neighbors of V, by the following
rule:

I — min{f, Iy +d]
Return to Step 1.

Consider the network shown in Figure 1.2 where the numbers are arc
lengths.

Figure 1.2

We shall put temporary labels inside each node and when the label becomes per-
manent, we shall add a star on the number. Whenever arcs are used in a shortest
path, we shall use heavy lines to represent them.

Step 0.  All nodes receive temporary labels equal to dy;, and the node V gets
permanent label 0. This is shown in Figure 1.3.

Step 1. Among all temporary labels, V; has the minimum value 2, so V;
receives a permanent label.

Step 2. The node V; has neighbors V, and V;
L —minlh, I + d3) = minl5, 2+1] = 3.
Is —minlls, 15 + d3s] = minleo, 2+11] = 13.

The result is shown in Figure 1.4.
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Step 1.

Step 2.

Step 1.
Step 2.

Step 1.
Step 2.

Figure 1.4

Among all temporary labels, the node V, has the minimum label 3. So
V, receives a permanent label.

The neighbors of V, are V,,V;. (Note V; is also a neighbor, but since
V3 has become permanent it is excluded.)

I —min[h, I§ + dy) = minl4, 3+3] = 4

by —minlh, I} + dy] = minleo, 3+13] = 16
The node V; receives the permanent label 4.

Iy —minll, I + di = minl12, 4+1] = 5.
This is shown in Figure 1.5,

V, gets a permanent label.

ls — minll, 1§ + dsg] = min [e0, 5+6] = 11



