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Preface

This monograph is an introductory book on the Theory of Random Matrices
(RMT). The theory dates back to the early development of Quantum Mechan-
ics in the 1940’s and 50’s. In an attempt to explain the complex organizational
structure of heavy nuclei, E. Wigner, Professor of Mathematical Physics at
Princeton University, argued that one should not compute energy levels from
Schrodinger’s equation. Instead, one should imagine the complex nuclei sys-
tem as a black box described by n X n Hamiltonian matrices with elements
drawn from a probability distribution with only mild constraints dictated by
symmetry considerations. Under these assumptions and a mild condition im-
posed on the probability measure in the space of matrices, one finds the joint
probability density of the n eigenvalues. Based on this consideration, Wigner
established the well-known semi-circular law. Since then, RMT has been de-
veloped into a big research area in mathematical physics and probability. Its
rapid development can be seen from the following statistics from Mathscinet
database under keyword Random Matrix on 10 June 2005 (See Table 0.1.)

1955—1964 | 1965—1974 | 1975—1984 | 1985-1994 | 1995—2004
23 138 249 635 1205

Table 0.1. Publication numbers on RMT in 10 year periods since 1955

Modern developments in computer science and computing facilities moti-
vate ever widening applications of RMT to many areas.

In statistics, classical limit theorems have been found to be seriously in-
adequate in aiding in the analysis of very high dimensional data.

In the biological sciences, a DNA sequence can be as long as several billious.
In finance research, the number of different stocks can be as large as tens of
thousands.

In wireless communications, the number of users can be several millions.
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All of these areas are challenging classical statistics. Based on these needs,
the number of researchers on RMT is gradually increasing. The purpose of
this monograph is to introduce the basic results and methodologies developed
in RMT. We assume readers of this book are graduate students and beginning
researchers who are interested in RMT. Thus, we are trying to provide the
most advanced results with proofs using standard methods, as detailed as we
can.

With more than a half century’s development of RMT, many different
methodologies have been developed in the literature. Due to the limitation of
our knowledge and length of the book, it is impossible to introduce all the
procedures and results. What we shall introduce in this book are those results
either obtained under moment restrictions using the moment convergence the-
orem, or the Stieltjes transform.

In an attempt at complementing the material presented in this book, we
have listed some recent publications on RMT which we have not introduced.

The authors would like to express their appreciation to Professors Chen
Mufa, Lin Qun, Shi Ningzhong and Ms. Lii Hong for their encouragement
and help in the preparation of the manuscript. They would also like to thank
Professors Zhang Baoxue, Lee Sungchul, Zheng Shurong, Zhou Wang and Hu
Guorong for their valuable comments and suggestions.

Changchun, China Zhidong Bai
Cary, North Carolina, USA Jack W. Silverstein
June 2006
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1

Introduction

1.1 Large Dimensional Data Analysis

The aim of this book is to investigate the spectral properties of random ma-
trices (RM) when their dimensions tend to infinity. All classical limiting theo-
rems in statistics are under the assumption that the dimension of data is fixed.
Then, it is natural to ask why the dimension needs to be considered large and
whether there are any differences between the results for fixed dimension and
those for large dimension.

In the past three or four decades, a significant and constant advancement in
the world has been in the rapid development and wide application of computer
science. Computing speed and storage capability have increased a thousand
fold. This has enabled one to collect, store and analyze data sets of very high
dimension. These computational developments have had strong impact on
every branch of science. For example, R. A. Fisher’s resampling theory had
been silent for more than three decades due to the lack of efficient random
number generators, until Efron proposed his renowned bootstrap in the late
1970’s; the minimum L; norm estimation had been ignored for centuries since
it was proposed by Laplace, until Huber revived it and further extended it
to robust estimation in the early 1970’s. It is difficult to imagine that these
advanced areas in statistics would have gotten such deep stages of development
if there were no such assistance from the present day computer.

Although modern computer technology helps us in so many aspects, it
also brings a new and urgent task to the statisticians, that is, whether the
classical limit theorems (i.e., those assuming fixed dimension) are still valid
for analyzing high dimensional data and how to remedy them if they are not.

Basically, there are two kinds of limiting results in multivariate analysis:
those for fixed dimension (classical limit theorems) and those for large dimen-
sion (large dimensional limit theorems). The problem turns out to be which
kind of results is closer to reality? As argued in Huber (1973), some statisti-
cians might say that five samples for each parameter in average are enough
for using asymptotic results. Now, suppose there are p = 20 parameters and



2 1 Introduction

we have a sample of size n = 100. We may consider the case as p = 20 being
fixed and n tending to infinity, or p = 2/n, or p = 0.2n. So, we have at least
three different options to choose for an asymptotic setup. A natural question
is then, which setup is the best choice among the three? Huber strongly sug-
gested to study the situation of increasing dimension together with the sample
size in linear regression analysis.

This situation occurs in many cases. In parameter estimation for a struc-
tured covariance matrix, simulation results show that parameter estimation
becomes very poor when the number of parameters is more than 4. Also, it
is found that in linear regression analysis, if the covariates are random (or
having measurement errors) and the number of covariates is larger than six,
the behavior of the estimates departs far away from the theoretic values, un-
less the sample size is very large. In signal processing, when the number of
signals is two or three and the number of sensors is more than 10, the tra-
ditional MUSIC (MUltivariate SIgnal Classification) approach provides very
poor estimation of the number of signals, unless the sample size is larger than
1000. Paradoxically, if we use only half of the data set, namely, we use the
data set collected by only five sensors, the signal number estimation is almost
hundred-percent correct if the sample size is larger than 200. Why this para-
dox would happen? Now, if the number of sensors (the dimension of data) is
p, then one has to estimate p? parameters (—%p(p—# 1) real parts and %p(p -1
imaginary parts of the covariance matrix). Therefore, when p increases, the
number of parameters to be estimated increases proportional to p? while the
number (2np) of observations increases proportional to p. This is the underly-
ing reason of this paradox. This suggests that one has to revise the traditional
MUSIC method if the sensor number is large.

An interesting problem was discussed by Bai and Saranadasa (1996) who
theoretically proved that when testing the difference of means of two high
dimensional populations, Dempster’s (1959) non-exact test is more powerful
than Hotelling’s T2 test even when the T?-statistic is well defined.

It is well known that statistical efficiency will be significantly reduced when
the dimension of data or number of parameters becomes large. Thus, several
techniques of dimension reduction were developed in multivariate statistical
analysis. As an example, let us consider a problem in principal component
analysis. If the data dimension is 10, one may select 3 principal components so
that more than 80% of the information is reserved in the principal components.
However, if the data dimension is 1000 and 300 principal components are
selected, one would still have to face a high dimensional problem. If one only
chooses 3 principal components, he would have lost 90% or even more of
the information carried in the original data set. Now, let us consider another
example.

Example 1.1. Let X;; be iid standard normal variables. Write
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1 n
S, = (; > X,-kak)
k=1

which can be considered as a sample covariance matrix, n samples of a p-
dimensional mean zero random vector with population matrix I. An important
statistic in multivariate analysis is

p

4,3=1

P
T,, = log(detS,,) = Zlog(kn,j)v
j=1

where A, ;, j =1,...,p, are the eigenvalues of S,. When p is fixed, A, ; — 1
almost surely as n — oo and thus T, 250.
Further, by taking a Taylor expansion on log(l + x), one can show that

Vn/pT, 2 N(0,2),

for any fixed p. This suggests the possibility that T, is asymptotically normal,
provided that p = O(n). However, this is not the case. Let us see what happens
when p/n — y € (0,1) as n — oo. Using results on the limiting spectral
distribution of {S,} [see Chapter 3], we will show that with probability one

b(y) logz

; ! og(1—y)~1=d(y) < 0

(1.1.1)
where a(y) = (1 — /¥)?, b(y) = (1 + /7)*. This shows that almost surely

Vn/pTn ~ d(y)y/np — —oo.

Thus, any test which assumes asymptotic normality of T, will result in a
serious error.

it - VW) — )@ = a(y))dz = £

p ay) 2wy

These examples show that the classical limit theorems are no longer suit-
able for dealing with high dimensional data analysis. Statisticians must seck
out special limiting theorems to deal with large dimensional statistical prob-
lems. Thus, the theory of random matrices (RMT) might be one possible
method in dealing with large dimensional data analysis and hence has received
more attention among statisticians in recent years. For the same reason, the
importance of RMT has been found applications in many research areas, such
as signal processing, network security, image processing, genetic statistics,
stock market analysis, and other finance or economic problems.

1.2 Random Matrix Theory

RMT traces back to the development of quantum mechanics (QM) in the
1940’s and early 1950’s. In QM, the energy levels of a system are described by
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eigenvalues of an Hermitian operator A on a Hilbert space, called the Hamil-
tonian. To avoid working with an infinite dimensional operator, it is common
to approximate the system by discretization, amounting to a truncation, keep-
ing only the part of the Hilbert space that is important to the problem under
consideration. Hence, the limiting behavior of large dimensional random ma-
trices attracts special interest among those working in QM and many laws
were discovered during that time. For a more detailed review on applications
of RMT in QM and other related areas, the reader is referred to the Book
Random Matrices by Mehta (1990).

Since the late 1950’s, research on the limiting spectral analysis of large di-
mensional random matrices has attracted considerable interest among math-
ematicians, probabilitists and statisticians. One pioneering work is the semi-
circular law for a Gaussian (or Wigner) matrix , due to Wigner, E., (Wigner
(1955, 1958)). He proved that the expected spectral distribution of a large
dimensional Wigner matrix tends to the so-called semicircular law. This work
was generalized by Arnold (1967, 1971) and Grenander (1963) in various as-
pects. Bai and Yin (1988a) proved that the spectral distribution of a sample
covariance matrix (suitably normalized) tends to the semicircular law when
the dimension is relatively smaller than the sample size. Following the work of
Maré&enko and Pastur (1967) and Pastur (1972, 1973), the asymptotic theory
of spectral analysis of large dimensional sample covariance matrices was devel-
oped by many researchers including Bai, Yin, and Krishnaiah (1986), Grenan-
der and Silverstein (1977), Jonsson (1982), Wachter (1978), Yin (1986), and
Yin and Krishnaiah (1983). Also, Bai, Yin, and Krishnaiah (1986, 1987), Sil-
verstein (1985a), Wachter (1980), Yin (1986), and Yin and Krishnaiah (1983)
investigated the limiting spectral distribution of the multivariate F-matrix,
or more generally, of products of random matrices. In the early 1980’s, ma-
jor contributions on the existence of LSD and their explicit forms for certain
classes of random matrices were made. In recent years, research on RMT is
turning toward second order limiting theorems, such as the central limit theo-
rem for linear spectral statistics, the limiting distributions of spectral spacings
and extreme eigenvalues.

1.2.1 Spectral Analysis of Large Dimensional Random Matrices

Suppose A is an m x m matrix with eigenvalues Aj, j = 1,2,...,m. If all these
eigenvalues are real, e.g., if A is Hermitian, we can define a one-dimensional
distribution function

1
FA(z) = —#{i<m: A < z}, (1.2.1)
called the empirical spectral distribution (ESD) of the matrix A. Here #F

denotes the cardinality of the set E. If the eigenvalues A;’s are not all real, we
can define a two-dimensional empirical spectral distribution of the matrix A:
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1 .
FA(z,y) = —n;#{] <m:R(A) <z, () <y}l (1.2.2)

One of the main problems in RMT is to investigate the convergence of
the sequence of empirical spectral distributions {4~} for a given sequence of
random matrices {A,}. The limit distribution F' (possibly defective), which
is usually nonrandom, is called the Limiting Spectral Distribution (LSD) of
the sequence {A,}.

We are especially interested in sequences of random matrices with dimen-
sion (number of columns) tending to infinity, which refers to the theory of
large dimensional random matrices.

The importance of ESD is due to the fact that many important statistics
in multivariate analysis can be expressed as functionals of the ESD of some
RM. We give now a few examples.

Example 1.2. Let A be an n x n positive definite matrix. Then

det(A) = fI A; = exp(n /oo log zF2 (dx)).
=1 0

Example 1.3. Let the covariance matrix of a population have the form ¥ =
X, + o®I, where the dimension of X is p and the rank of X, is ¢(< p).
Suppose S is the sample covariance matrix based on n iid. samples drawn
from the population. Denote the eigenvalues of S by 01 > 02 2 ... = 0.
Then the test statistic for the hypothesis Hp : rank(¥,) = ¢ against H; :
rank(X,) > q is given by

1 Ld 1 P
— 2
T=1=q N 2
j=q+1 j=q+1

g oq 2
P [ 2pS ) - (—p—/ a:FS(dx)> .
P—4aJo

p—qlJo
1.2.2 Limits of Extreme Eigenvalues

In applications of the asymptotic theorems of spectral analysis of large di-
mensional random matrices, two important problems arose after the LSD was
found. The first is the bound on extreme eigenvalues; the second is the con-
vergence rate of the ESD, with respect to sample size. For the first problem,
the literature is extensive. The first success was due to Geman (1980), who
proved that the largest eigenvalue of a sample covariance matrix converges
almost surely to a limit under a growth condition on all the moments of the
underlying distribution. Yin, Bai, and Krishnaiah (1988) proved the same re-
sult under the existence of the 4th moment, and Bai, Silverstein, and Yin
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(1988) proved that the existence of the 4th moment is also necessary for the
existence of the limit. Bai and Yin (1988b) found the necessary and sufficient
conditions for almost sure convergence of the largest eigenvalue of a Wigner
matrix. By the symmetry between the largest and smallest eigenvalues of a
Wigner matrix, the necessary and sufficient conditions for almost sure con-
vergence of the smallest eigenvalue of a Wigner matrix was also found.

Comparing to almost sure convergence of the largest eigenvalue of a sam-
ple covariance matrix, a relatively harder problem is to find the limit of the
smallest eigenvalue of a large dimensional sample covariance matrix. The first
attempt was made in Yin, Bai, and Krishnaiah (1983), in which it was proved
that the almost sure limit of the smallest eigenvalue of a Wishart matrix has
a positive lower bound when the ratio of dimension to the degrees of freedom
is less than 1/2. Silverstein (1984) modified the work to allowing the ratio
less than 1. Silverstein (1985b) further proved that with probability one, the
smallest eigenvalue of a Wishart matrix tends to the lower bound of the LSD
when the ratio of dimension to the degrees of freedom is less than 1. However,
Silverstein’s approach strongly relies on the normality assumption on the un-
derlying distribution and thus, it cannot be extended to the general case. The
most current, contribution was made in Bai and Yin (1993) in which it is proved
that under the existence of the fourth moment of the underlying distribution,
the smallest eigenvalue (when p < n) or the p — n + 1st smallest eigenvalue
(when p > n) tends to a(y) = ¢%(1 — /§)?, where y = lim(p/n) € (0, 00).
Comparing to the case of the largest eigenvalues of a sample covariance ma-
trix, the existence of the fourth moment seems to be necessary also for the
problem of the smallest eigenvalue. However, this problem has not yet been
solved.

1.2.3 Convergence Rate of ESD

The second problem, the convergence rate of the spectral distributions of large
dimensional random matrices, is of practical interest, but has been open for
decades. In finding the limits of both the LSD and the extreme eigenvalues of
symmetric random matrices, a very useful and powerful method is the moment
method which does not give any information about the rate of the convergence
of the ESD to the LSD. The first success was made in Bai (1993a, b), in
which a Berry-Esseen type inequality of the difference of two distributions was
established in terms of their Stieltjes transforms. Applying this inequality, a
convergence rate for the expected ESD of a large Wigner matrix was proved to
be O(n~1/4), that for the sample covariance matrix was shown to be O(n~1/4)
if the ratio of the dimension to the degrees of freedom is apart away from one,
and to be O(n=%/48), if the ratio is close to 1.

1.2.4 Circular Law

The most perplexirig problem is the so-called circular law which conjectures
that the spectral distribution of a non-symmetric random matrix, after suit-
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able normalization, tends to the uniform distribution over the unit disc in the
complex plane. The difficulty exists in that two most important tools used
for symmetric matrices do not apply for non-symmetric matrices. Further-
more, certain truncation and centralization techniques cannot be used. The
first known result was given in Mehta (1967) and in an unpublished paper of
Silverstein (1984) which was reported in Hwang (1986). They considered the
case where the entries of the matrix are iid standard complex normal. Their
method uses the explicit expression of the joint density of the complex eigen-
values of the random matrix which was found by Ginibre (1965). The first
attempt to prove this conjecture under some general conditions was made
in Girko (1984a, b). However, his proofs have puzzled many who attempt to
understand, without success, Girko’s arguments. Recently, Edelman (1995)
found the conditional joint distribution of complex eigenvalues of a random
matrix whose entries are real normal N(0,1) when the number of its real
eigenvalues is given and proved that the expected spectral distribution of the
real Gaussian matrix tends to the circular law. Under the existence of 4 + ¢
moment and some smooth conditions, Bai (1997) proved the strong version of
the circular law.

1.2.5 CLT of Linear Spectral Statisticslinear spectral statistics

As mentioned above, functionals of the ESD of RM’s are important in multi-
variate inference. Indeed, a parameter 8 of the population can sometimes be
expressed as

9=/f(ac)dF(a:).

To make statistical inference on 8, one may use the integral

0= [ 1@)aFa(@),

which we call linear spectral statistics (LSS), as an estimator of 8, where F,(z)
is the ESD of the RM computed from the data set. Further, one may want
to know the limiting distribution of 6 through suitable normalization. In Bai
and Silverstein (2004) the normalization has been found to be n, by showing
the limiting distribution of the linear functional

Xolf) = [ F@(ELD - FO)

to be Gaussian under certain assumptions.

The first work in this direction was done by D. Jonsson (1982) in which
f(t) =t" and F, is the ESD of normalized standard Wishart matrix. Further
work was done by Johansson, K. (1998), Bai and Silverstein (2004), Bai and
Yao (2004), Sinai and Soshnikov (1998), among others.



