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| | PREFACE

This book is intended for a one-semester (or two-quarter) second course in circuit
analysis. The student is expected to have had the following topics as prerequisites: R,
L, M, and C as circuit elements, analysis of resistive networks via node and loop
equations, dc¢ Thévenin and Norton equivalent circuits, power and energy,
superposition, classical solutions of first-order (RL, RC) circuits and of second-order
(RLC} circuits, simple operational amplifier circuits, and sinusoidal steady-state
(phasor) analysis.*

To help the student and the instructor in the review of some of this material,
Chapter 1 provides a summary leading to the general time-domain formulation of
dynamic equations for RLC networks. Appendix A contains the essentials of linear
algebraic equations, matrices, and determinants. In Appendix B, a brief survey is
given of the op-amp, together with some of its common circuits. Students and
instructors should use théir discretion in studying this review material and referring to
itas needed. Appendix C, on scaling, may be conveniently studied or reviewed at this
carly stage. '

The rest of the book is devoted to more advanced topics in circuit analysis.
Interconnections of networks, topology, and signal flow graphs (Appendix D) stress
the uniformity and the organized formulation of network equations. Convolution
reiterates the principle of superposition. The Laplace transform and the Fourier
transform serve as powerful tools in the solution of network equations; in addition,
they provide the necessary tools for many related subjects, such as stability and
frequency response. State variable analysis and solution give us, in addition to
mathematical elegance, a deep insight into the physical behavior of networks. The
last chapter gives a brief introduction to linear, time-varying networks.

Throughout the text, the following features are used:

1. Problems relevant to a particular topic are listed by number next to the discussion
of that topic. It is hoped that such an arrangement will make the learning of the
material more systematic and more helpful.

2. Topics which are more advanced are marked with an asterisk (*) at the beginning
of the appropriate section. They may be skipped during the first reading without loss
of continuity. Later, the student and the instructor are encouraged to return and
integrate them into the study.

3. Examples are marked clearly with a title (“Example 3”’) and with a square mark
(1) at the end, all between two thick lines:.

4. Ifi Appendix F, selected solutions and hints to problems are given. The student
should use these judiciously as a helpful tool, not as a substitute for thinking and

* See, for example, R. E. Thomas and A. J. Rosa, Circuits and Signals. New York: John Wiley & Sons, 1984,
and D. F. Mix and N. M. Schmitt, Circuit Analysis for Engineers: Continuous and Discrete- Time Systems. New
York: John Wiley & Sons, 1985.



vi Preface

working! A more complete Solutions Manual is available to instructors upon
adoption.

5. References and bibliographical listings at the end of each chapter are kept to a
minimum. Too many references may look impressive, but they tend to discourage, by
their sheer numbers, even the most well-intended student. This is not to say, however,
that a resourceful instructor should not encourage the better students to read
‘additional material. The given lists are a good start in that direction.

I gratefully acknowledge the help of Robin Morel, Ireena Erteza, and Sabina
Erteza, who helped me in the preparation of Appendix E. My secretary, Mrs. Joan
Lillie, typed the final manuscript and managed the administrative aspects of my
work. My editors at John Wiley & Sons, along with the staff, provided prompt,
courteous, and efficient assistance throughout the stages of this project. My sincere
thanks go to them. '

Albuguerque, New Mexico ’ Shlomo Karni
August 1985
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In this chapter, we review the basic properties of network elements and the
formulation of loop equations and node equations. :

1-1 SYSTEMS AND NETWORKS

In its broadest sense, a system can be defined as a group, or collection, of components,
each with its specific characteristics, interacting in some prescribed manner. So, an
automobile with all its parts, a generating station supplying electric power to
customers through transmission lines, the nerves of a living organism, a group of
people with certain mutual interests—all are examples of systems. In fact, any
conceivable group of entities, interrelated in some fashion can be called a system.

In particular, an electrical network is a system, consisting of elements (compo-
nents) such as resistors, capacitors, voltage and current sources, transistors, diodes,
etc. Our aim in this book is the analysis of electrical networks, that is the development
of the mathematical relations among the variables that describe the behavior of the
network.

1-2 SOME CHARACTERISTICS
OF ELECTRICAL NETWORKS

In certain cases, it will be useful to represent a network by the classical “black box.”
See Fig. 1-1. It has, in general, m inputs (excitations), x,(2), x3(¢),..., x,(¢) and n
outputs (responses), ¥;(¢), ¥;(£), - . . , 7(¢).! Note that, in general, m is not equal to n.
We use the notation

S{xhxz,-"_x xm} = {.yl')}'Z’yS)""]n} (l'la)

! These are general symbols; others are e(f) for excitation and r(#) for response. Specific ;xcitations and
" responses will be denoted by appropriate symbols such as i() for a current, o(¢) for a voltage, etc.



2 1 Introduction

x1() y1(0)
Input %2 20 Output
(excitation) . H (response)
tm® ® ) ®
———
FIGURE 1-1.. A “‘Llack box.”
or
S I (
o T {94395 Va5« o5 0n} j (1-1b)
to mean, ‘‘the inputs xy, x,, . to network S produce the outputs yy, 52, . - -, Dot

In network analysis, we dedl in general with the following problems.

1. Given the network S, obtain the input-output relations in the mdlhcmduml form.
In other words, find the explicit form of Eq. (1-1) for a given network. /

2. Having obtained the (quatmns for the given network, solve them to ()r)tam the
outputs corresponding to given inputs. ,

3. Discuss the mathematical properties of the equations of a network, dnd hence,
certain properties of the network.

A continuous-time network is characterized by inputs and outputs which are functions
of the continuous variable t. In a discrete-time network, they vary only atdiscrete values of
time. In the former case we designate these inputs and outputs as \'/Iv and y({),

whereas in the latter case they are denoted by v(n) and y(n ., where n = S A
) L
x(2) x(t—to) A x(t) x(t—tg)
i) il
| | | |
| | | |
2 _ 1 L 1 ) oo
to t to t
/
0] 1N\ yie—tg) y(®) yit—to)
bern oy P
L il S /[ o
to t i Vt
(@ Y

FIGURE 1-2. (a) A constant network; () A time-varying network.
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are the discrete points on the time axis. Continuous-time networks can be described,
in general, by differential equations, and discrete-time networks by difference equations.

A constant (time-invariant) network is one whose response has a shape depending
only on the shape of the excitation and not on the time of application of the excitation
(see Fig. 1-2). Mathematically, this can be expressed as follows: with all initial
conditions zero, if

S{x(0)} =) (1-2a)
then .
S{x(t = to)} = x(t — to) (1-2b)

where the notation of Eq. (I-1) is used. In other words: a time-shift £, in the input
produces an identical time-shift in the output.

In a time-varying network, Eq. (1-2b) does not hold. Typically, the parameters of
a time-invariant network will be constants, and those of a time-varying network will
be functions of time.

Example 1

A (hypothetical) network is described by the equation o(t) = (¢/2), where ¢ is the
output voltage and i is the input current. Applying Eq. (1-2), we obtain
S{i(t — o)} = i (t = to)]
but on the other hand,
ol = to) = i}t — 1)

obviously, i(¢/2 — t3) # i[1/2(t — tp)], and, therefore, the network is time-varying.

O

Example 2

The output current of a certain network is given by i() = [v(¢)]?, where vis the input
voltage. With Eq. (1-2), we obtain ' :

S{olt — 1)} = [o(t — 10))?

it — 1) = [olt = 1)]?

on the other. This network, then, is constant. ) i}

on one hand, and .

_ A lu?nged element has physical dimensions which do net’ 'aﬂ'ect its. descsibing
. equation, More precisely, if d is the largest dimension Qf the clemept and 4 is the
wavelength of the signal, then a lumped element satnsﬁes -

. d« i T s
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The wavelength 4 is given by
’

A= (1-3b)

i

where ¢ = 3 x 10® m/s = velocity of electromagnetic waves (velocity of light),
qnd [, in Hertz, is the frequency of the signal. Tota! differential equations describe a
network made up of lumped elements. Ina distributed network, variations with respect
to, say, the length of the components are important; such a network is described by

partial differential equations, involving space variation as well as time variation.
————t” .

Example 3

At audio frequencies, with f = 1,000 Hz, 4 = 3 x 10° meters ~ 186 miles. At
typical microwave frequencies, f = 10! Hz, then A = 3 cm = 1.2inches. Thus, for
audio circuits, all elements are considered lumped, In microwave circuits, elements
such as waveguides are distributed and their describing equations will involve space
variations as well as time variations.

rax iAx i(t,x + Ax)
>~ AN Ve a2t ’ﬁ
+ —— +
it,x)
u(t,x) cAx 8Ax v(t, x + Ax)

]
|

bee— Ax

FIGURE 1-3. A model of a distributed network.

The model of the transmission line, Fig. 1-3, is that of a distributed network,
since its equations are!

oo(t,x) . oi(t, x)
i " ri(t, x) + 1—61
L Oi(tx) 60(! do(t, x)

Ox =g(hx) +¢ ot

showing dependence on time and position; voltage and current at a given time will
vary along the length of transmission line. ‘ ] (]

1-3 ELEMENTS AND SOURCES

It is both an amazing and a comforting fact that we can model, analyze, and design
the most complicated electrical networks' using only a few basic elements. Let us
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FIGURE 1-4. A constant resistor and its v—i characteristic.

review their properties and introduce certain additional concepts associated with
them.

The Resistor
A lumped, time invariant, linear resistor is defined By its voltage-current relation
o(t) = Ri(t) ' (1-4a)

as shown in Fig. 1-4. The voltage #(¢) and the current i(t) have their reference signs as
indicated.! The units of »(¢) are volts (V), of i(t) are amperes (A), and the resistance R is
in okms (Q). '

The inverse relationship, i in terms of v, is, of course,

1

"i(t) = = o(t) = Go(t) : (1-4b)

|

where G, the conductance, is in mhos (U3).

The relationships in Eq. (1-4) indicate that the output of a resistor, either v or i,
depends, at any time { = {,, only on the input, ¢ or v, respectively, at that time t = t,,
and not on past values of the input. Such an element is called instantaneous (memoriless).

The Capacitor
A constant, lumped, linear capacitor is defined by its charge-voltage relation
q(t) = Co(t) o (1-5)

as shown in Fig. 1-5. The charge ¢(¢) is measured in coulombs and the capacitance Cis
in farads (F). In network analysis, we are interested in the relations between currents
and voltages; therefore, we recall the basic relation between current and charge

i(t) = d—%(:)- (1-6)

. * Throughout this book, lower case letters will denote EanciJious of time, for example, #(), i(f). Sometimes
the parenthetical ¢ may be omitted for conveplence. . .

i
e - 1;7&‘:
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q
i i !
e
+ 2 Z
Q
+ o
§ e a0
LY 1)
FIGURE 1-5. A constant capacitor and its g-v characteristic.
and differentiate Eq. (1-5). The result is
/
dq(t) . do(t) /
—— =) = C—— 1-7a
7 (t) - (1-7a)

and it provides the i—v relationship for the capacitor.
The inverse relationship, v in terms of i, is obtained from Eq. (1-5) and by
integrating Eq. (1-7a):

M,= o(t) = lJ“ 1(x) dx (1-7b)

The integral of i, from” — oo to any time /, represents the total charge on the capaci-
tor at time ¢. The dummy variable x is used in the integrand in order not to confuse it
with £

Unlike the resistor, the capacitor has a memory: past values of the input () also
affect the output (v), as seen in Eq. (1-7b). Such an element, where the output at
t = 1y depends on present and on past values of the input, is called dynamic.

Finally, it will be convenient for us to rewrite Eq. ( 1-7b) by expressing the integal
as a sum of two integrals:

t . 0 ‘ t t
f i(x) dx = j i(x) dx + J. i(x) dx = q(0) + J i(x) dx (1-8)
- - 0 0 ? oL

where ¢ = 0 is some convenient initial time, and ¢(0) is the initial charge (initial
condition) on the capacitor. Then Eq. (1-7b) becomes

0 15 gt
: (z)=ﬁél+5jo (x) dx (1-9)
that is,
1 o(t) = v(0) + éjl i(x) dx (1-10)
0

with 2(0) the initial voltage across the capacitor.
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The Inductor ‘ _
A constant, lumped, linear inductor is defined by its flux-current relation
' o(1) = Lil1) : (1-11)

as shown in Fig. 1-6. The flux Q ) is measured in webers and the inductance L in
henries (H). ' - e

In order to obtain the v, relatlomke\call that, according to experimental
observations (of Faraday, Lenz, Mhers e

u(t) = —— (1-12)
and differentiate Eq. (1-11)
— =y(t) = L —— (1-13a)

This is the desired »—i relationship for the inductor. h is interesting and instructive to
recognize that Egs. (1-7a) and (1-13a) are of identical form, but with voltage and
current exchanging places; that is, for the capacitor

(1-7a)

while for the inductor

dig(t)
dt

o (t) = L (1-13a)

Here we have added the subscripts C and L for clarity. Such relationships, where
elements obey the same equation in form but with » and ¢ replaced, are called duals.
The principle of duality will be very useful to us.

N .
¢¢ + o0 .

L v

FIGURE 1-6. A constant inductor and its ¢—i characteristic.



