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Foreword

The first course usually is an appetizer. In the case of Raymond Yeung's
A First Course in Information Theory, however, another delectable dish gets
served up in each of the sixteen chapters. Chapters 1 through 7 deal with the
basic concepts of entropy and information with applications to lossless source
coding. This is the traditional early fare of an information theory text, but Ye-
ung flavors it uniquely. No one since Shannon has had a better appreciation for
the mathematical structure of information quantities than Prof. Yeung. In the
early chapters this manifests itself in a careful treatment of information mea-
sures via both Yeung’s analytical theory of /-Measure and his geometrically
intuitive information diagrams. (This material, never before presented in a text-
book, is rooted in works by G. D. Hu, by H. Dyckman, and by R. Yeung er al.)
Fundamental interrelations among information measures and Markovianness
are developed with precision and unity. New slants are provided on staples like
the divergence inequality, the data processing theorem, and Fano’s inequality.
There 1s also a clever, Kraft-inequality-free way of proving that the average
length of the words in a lossless prefix source code must exceed the source’s
entropy. An easily digestible treatment of the redundancy of lossless prefix
source codes also 1s served up, an important topic in practice that usually 1s
slighted in textbooks.

The concept of weakly typical sequences is introduced and then used to an-
chor Yeung's proof of the lossless block source coding theorem. The concept
of strongly typical sequences is introduced next. Later extended to joint typ-
icality, this provides a foundation for proving the channel coding theorem in
Chapter 8, the lossy source coding (rate-distortion) theorem in Chapter 9, and
selected multi-source network coding theorems in Chapter 15. Although the
proof of the channel coding theorem follows standard lines, Yeung’s tasteful
development of the interplay between information quantities and Markovian-
ness readies one's palate for a rigorous proof that feedback around a discrete
memoryless channel does not increase its capacity. In most information the-
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ory books this basic result of Shannon either does not appear or is relegated to
a problem 1n which the several steps are outlined in order to guide the reader
toward the goal. Rate-distortion theory and Shannon’s lossy source coding the-
orem are treated in familiar ways. When proving the latter, one confronts lack
of independence of the events {(X, X (1)) € T™}, where X is a random source
word, X(i ) 1s the 2th word in a randomly chosen source code, and 7™ 1s the
set of jointly typical vector pairs. In those instances in which this widely un-
appreciated stumbling block is not overlooked entirely, it usually is addressed
via either a non-selfcontained reference or a mammoth problem at the end of
the chapter However, Yeung's thorough earlier development of strong joint
typicality concepts allows him to tackle it head-on.

Chapter 10 dishes up a careful treatment of the iterative algorithms for
computation of channel capacity and rate-distortion functions pioneered by
R. E. Blahut and S. Arimoto, which is generally accepted as today’s preferred
approach to computational information theory. Moreover, it has the extra ad-
vantage that iterative optimization algonithms are finding widespread appli-
cation to areas as diverse as decoding of turbo and low-density parity-check
codes and belief propagation in artificial intelligence and in real and artificial
neural nets.

Chapters 11 through 16 are a unique tour de force. In as digestible a fash-
1on as could possibly be expected, Yeung unveils a smorgasbord of topics in
modern information theory that heretofore have been available only in research
papers generated principally by Yeung and his research collaborators. Chap-
ter 11 is a strong treatment of single-source network coding which develops
carefully the relationships between information multicasting and the max-flow
min-cut theory. Yeung makes an iron-clad case for how nodes must in general
perform coding, not just storing and forwarding. Chapters 12, 13 and 14 on
information nequalities of both Shannon and non-Shannon type constitute a
definitive presentation of these topics by the master chef himself. Connections
with linear programming are exploited, culminating in explication of Informa-
tion Theory Inequality Prover (ITIP) of R. Yeung and Y.-O. Yan for inequali-
ties of Shannon-type which comes with this book (also WWW-available). This
leads, in turn, to the fascinating area of non-Shannon-type information inequal-
ities, pioneered by R. Yeung and Z. Zhang. This material has been found to
possess profound implications for the general area of information structures
being studied by mathematical logicians and may also contribute to thermo-
dynamics and statistical mechanics wherein the concept of entropy originated
and which continue to be heavily concerned with various families of general
inequalities. The theory of [-Measure introduced in Chapter 6 provides the
essential insight into those of the non-Shannon type inequalities that are dis-
cussed here. Multi-source network coding in Chapter 15 is a confounding area
in which Yeung and others have made considerable progress but a compre-
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hensive theory remains elusive. Nonetheless, the geometrical framework for
information inequalities developed in Chapters 12 and 13 renders a unifying
tool for attacking this class of problems. The closing chapter linking entropy
to the theory of groups is mouthwateringly provocative, having the potential to
become a major contribution of information theory to this renowned branch of
mathematics and mathematical physics.

Savor this book; I think you will agree the proof is in the pudding.

Toby Berger
Irwin and Joan Jacobs Professor of Engineering
Cornell University, Ithaca, New York



Preface

Cover and Thomas wrote a book on information theory [52] ten years ago
which covers most of the major topics with considerable depth. Their book
has since become the standard textbook in the field, and it was no doubt a
remarkable success. Instead of writing another comprehensive textbook on the
subject, which has become more difficult as new results keep emerging, my
goal is to write a book on the fundamentals of the subject in a unified and
coherent manner

During the last ten years, significant progress has been made in understand-
ing the entropy function and information inequalities of discrete random vari-
ables. The results along this direction not only are of core interest in infor-
mation theory, but also have applications in network coding theory, probability
theory, group theory, Kolmogorov complexity, and possibly physics. This book
is an up-to-date treatment of information theory for discrete random vanables,
which forms the foundation of the theory at large. There are eight chapters
on classical topics (Chapters 1, 2, 3, 4, 5, 8, 9, and 10), five chapters on fun-
damental tools (Chapters 6, 7, 12, 13, and 14), and three chapters on selected
topics (Chapters 11, 15, and 16). The chapters are arranged according to the
logical order instead of the chronological order of the results in the literature.

What is in this book

Out of the sixteen chapters in this book, the first thirteen chapters are basic
topics, while the last three chapters are advanced topics for the more enthusi-
astic reader. A brief rundown of the chapters will give a better 1dea of what is
in this book

Chapter 1 1s a very high level introduction to the nature of information the-
ory and the main results in Shannon’s original paper in 1948 which founded
the field. There are also pointers to Shannon's biographies and his works.
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Chapter 2 introduces Shannon’s information measures and their basic prop-
erties. Useful identities and inequalities in information theory are derived and
explained. Extra care is taken in handling joint distributions with zero probabil-
ity masses. The chapter ends with a section on the entropy rate of a stationary
information source.

Chapter 3 is a discussion of zero-error data compression by uniquely decod-
able codes, with prefix codes as a special case. A proof of the entropy bound
for prefix codes which involves neither the Kraft inequality nor the fundamen-
tal inequality is given. This proof facilitates the discussion of the redundancy
of prefix codes.

Chapter 4 1s a thorough treatment of weak typicality. The weak asymptotic
equipartition property and the source coding theorem are discussed. An ex-
planation of the fact that a good data compression scheme produces almost
1.1.d. bits 1s given. There is also a brief discussion of the Shannon-McMillan-
Breiman theorem.

Chapter 5 introduces a new definition of strong fypicality which does not
involve the cardinalities of the alphabet sets. The treatment of strong typicality
here is more detailed than Berger [21] but less abstract than Csiszar and Komer
[55]. A new exponential convergence result is proved in Theorem 5.3.

Chapter 6 is an introduction to the theory of I-Measure which establishes a
one-to-one correspondence between Shannon’s information measures and set
theory. A number of examples are given to show how the use of information
diagrams can simplify the proofs of many results in information theory. Most
of these examples are previously unpublished. In particular, Example 6.15 is a
generalization of Shannon’s perfect secrecy theorem.

Chapter 7 explores the structure of the /-Measure for Markov structures.
Set-theoretic characterizations of full conditional independence and Markov
random field are discussed. The treatment of Markov random field here 1s per-
haps too specialized for the average reader, but the structure of the /-Measure
and the simplicity of the information diagram for a Markov chain is best ex-
plained as a special case of a Markov random field.

Chapter 8 consists of a new treatment of the channel coding theorem. Specif-
ically, a graphical model approach is employed to explain the conditional in-
dependence of random variables. Great care is taken in discussing feedback.

Chapter 9 is an introduction to rate-distortion theory. The version of the
rate-distortion theorem here, proved by using strong typicality, 1s a stronger
version of the original theorem obtained by Shannon.

In Chapter 10, the Blahut-Arimoto algorithms for computing channel ca-
pacity and the rate-distortion function are discussed, and a simplified proof for
convergence 1s given. Great care is taken in handling distributions with zero
probability masses.
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Chapter 11 is an introduction to network coding theory. The surprising fact
that coding at the intermediate nodes can improve the throughput when an in-
formation source is multicast in a point-to-point network is explained. The
max-flow bound for network coding with a single information source is ex-
plained in detail. Multi-source network coding will be discussed in Chapter 15
after the necessary tools are developed in the next three chapters.

Information inequalities are sometimes called the laws of information theory
because they govern the impossibilities in information theory. In Chapter 12,
the geometrical meaning of information inequalities and the relation between
information inequalities and conditional independence are explained in depth.
The framework for information inequalities discussed here 1s the basis of the
next two chapters.

Chapter 13 explains how the problem of proving information inequalities
can be formulated as a linear programming problem. This leads to a complete
characterization of all information inequalities which can be proved by conven-
tional techniques. These are called Shannon-type inequalities, which can now
be proved by the software ITIP which comes with this book. It is also shown
how Shannon-type inequalities can be used to tackle the implication problem
of conditional independence in probability theory.

All information inequalities we used to know were Shannon-type inequal-
ities. Recently, a few non-Shannon-type inequalities have been discovered.
This means that there exist laws in information theory beyond those laid down
by Shannon. These inequalities and their applications are explained in depth
in Chapter 14.

Network coding theory is further developed in Chapter 15. The situation
when more than one information source are multicast in a point-to-point net-
work is discussed. The surprising fact that a multi-source problem is not equiv-
alent to a few single-source problems even when the information sources are
mutually independent is clearly explained. Implicit and explicit bounds on
the achievable coding rate region are discussed. These characterizations on
the achievable coding rate region involve almost all the tools that have been
developed earlier in the book, in particular, the framework for information in-
equalities.

Chapter 16 explains an intriguing relation between information theory and
group theory. Specifically, for every information inequality satisfied by any
joint distribution, there is a corresponding group inequality satisfied by any
finite group and its subgroups, and vice versa. Inequalities of the latter type
govern the orders of any finite group and their subgroups. Group-theoretic
proofs of Shannon-type information inequalities are given. At the end of this
chapter, a group inequality is obtained from a non-Shannon-type inequality
discussed in Chapter 14. The meaning and the implication of this inequality
are yet to be understood.
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How to use this book

You are recommended to read the chapters according to the above chart.
However, you will not have too much difficulty jumping around in the book
because there should be sufficient references to the previous relevant sections.

As a relatively slow thinker, I feel uncomfortable whenever I do not reason
in the most explicit way. This probably has helped in writing this book, in
which all the derivations are from the first principle. In the book, I try to
explain all the subtle mathematical details without sacrificing the big picture.
Interpretations of the results are usually given before the proofs are presented.
The book also contains a large number of examples. Unlike the examples in
most books which are supplementary, the examples in this book are essential.

This book can be used as a reference book or a textbook. For a two-semester
course on information theory, this would be a suitable textbook for the first
semester. This would also be a suitable textbook for a one-semester course
if only information theory for discrete random variables is covered. If the in-
structor also wants to include topics on continuous random variables, this book
can be used as a textbook or a reference book in conjunction with another suit-
able textbook. The instructor will find this book a good source for homework
problems because many problems here do not appear in any other textbook. A
comprehensive instructor’s manual is available upon request. Please contact
the author at whyeung @ie.cuhk.edu.hk for information and access.

Just like any other lengthy document, this book for sure contains errors and
omissions. To alleviate the problem, an errata will be maintained at the book
homepage http://www.ie.cuhk.edu.hk/IT_book/.

RAYMOND W. YEUNG
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