WwWILEY WILEY PROFESSIONAL COMPUTING

\

BUILDING
CUSTOM
SOFTWARE
TOOLS AND
LIBRARIES

Martin Stitt

BUILDING CUSTOM
SOFTWARE TOOLS
AND LIBRARIES

Martin Stitt

In recognition of the important of preserving what has been written, it is a policy of John
Wiley & Sons, Inc. to have books of enduring value published in the United States printed on
acid-free paper, and we exert our best efforts to that end.

Designations used by companies to distinguish their products are often claimed as trademarks.
In all instances where John Wiley & Sons, Inc. is aware of a claim, the product names appear
in initial capital or all capital letters. Readers, however, should contact the appropriate
companies for more complete information regarding trademarks and registration.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold with the understanding that the publisher is not engaged
in rendering legal, accounting, or other professional service. If legal advice or other expert
assistance is required, the services of a competent professional person should be sought.
FROM A DECLARATION OF PRINCIPLES JOINTLY ADOPTED BY A COMMITTEE OF
THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS.

Copyright © 1993 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by section 107

or 108 of the 1976 United States Copyright Act without the permission of the copyright
owner is unlawful. Requests for permission or further information should be addressed to the
Permission Department, John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data

Stit , Martin
Building custom software tools and libraries / Martin Stitt.
. om.

Includes index.

ISBN 0-471-57914-9 (alk. paper : disk). — ISBN 0-471-57915-7
(pbk.). — ISBN 0-471-57916-5 (disk)

1. Computer software-Development. 2. Utilities (Computer
programs). 1. Title.
OA76.76.D47847 1993
005.1—dc20 92-33072

CIP

Printed in the United States of America
10987654321

TRADEMARK ACKNOWLEDGMENTS

TASM, TLINK, and TLIB are registered trademarks of Borland International, Inc.

MASM, LINK, LIB, MS-DOS, and Windows are registered trademarks of Microsoft
Corporation.

IBM, PC, XT, AT, and OS/2 are registered trademarks of International Business
Machines Corporation.

BRIEF is a trademark of Solution Systems Company.

ABOUT THE AUTHOR

Martin Stitt began working as an electronics technician in 1972. His first
brush with computers came when he designed and hand-built an 8080-based
system. Martin progressed from there to work as a systems design engineer,
developing microprocessor-based control systems for data communications,
energy management, and data acquisition.

Martin now works as a contract software engineer and is involved in
such projects as a multitasking/multiuser operating system, X.25, and NET-
BIOS communications drivers, database applications, CASE systems, debug-
ging tools, and, of course, library development.

His first book Debugging: Creative Techniques and Tools for Software Repair,
was also published by John Wiley & Sons, Inc. He has written articles on soft-
ware development published in PC Tech Journal, Dr. Dobb’s Journal, Computer
Language, C User’s Journal, and Tech Specialist.

PREFACE

This is a book for those of you who need to write software utilities. You might
be an engineer in need of a custom software tool to model the characteristics
of a new design. You might be a scientist who requires a custom tool to
interface a piece of prototype laboratory equipment. You might be a print-
shop technician in need of a custom utility to translate foreign typesetting
codes to your system. You may be a programmer in need of a custom tool
to create data sets for an application you are testing. The possibilities are
endless!

I wrote this book to show how custom software tooling can be created
in an efficient manner.

This is not a book on “How to Program in Assembler” or “How to
Program in C” (or in any other specific language, for that matter). Books
of that sort are plentiful. Nor is it a book that presents a specific library of
tool-building components, requiring you to wade through pages and pages
of source code listings.

This book addresses the nuts-and-bolts issues involved in the design and
implementation of custom tools, including the following:

¢ Different forms tools can take

¢ User interfaces

¢ System interfaces

¢ Tool-to-tool interfaces

¢ How compilation and linking work

e The design, construction, and maintenance of function libraries
¢ Documentation strategies for tools and library modules

o File processing

Library techniques are covered because they make reusable software
possible. If you aren’t familiar with the design and maintenance of a function

XXi

XX

PREFACE

library, then, as you build more and more tools, you either have to reinvent
certain wheels or you end up using other, less efficient means to share code.

One of my goals in writing this book was to balance the presentation.
When a book on software development is too general, readers must do addi-
tional research to attain knowledge that they can apply in their work. Con-
versely, a book with a narrow focus, such as just covering a certain language
or specific brand of compiler, becomes dated quickly.

This book generalizes by presenting its program code in pseudocode
form first. The action chart diagramming method is used to impart a graphic
clarity to this pseudocode. This approach provides significant detail about
the function of the software in an easy-to-read and language-independent
manner. (See Appendix A for an explanation of this pseudocode method.)

Many of the pseudocode presentations are followed by an actual imple-
mentation in C or assembler. For your convenience, all code examined in this
book is available in both source and binary form on the Companion Diskette.

A combination of C and assembler is used in the templates and library
functions on the Companion Diskette. The C portions were developed in
standard C using Borland C++ version 2.0; the assembler portions were
developed using Microsoft's MASM 5.1 and are compatible with Borland’s
TASM.

The program templates are designed to produce drivers and utilities
composed of various combinations of C and assembler code. Device drivers
and TSRs can be written entirely in assembler or in a mixture of assembler
and C. Stand-alone utility programs are supported as only assembler, only C,
or a combination. The program library functions are available to all configu-
rations.

Because of the generalized presentation of the code in the book, im-
plementing this book’s techniques in languages other than C should be an
easy task. A working knowledge of the MS-DOS operating system and its
system-level interface is presumed.

THE COMPANION LIBRARY

The Companion Library contains the following types of functions:

Parsing Logic
Parse fixed and switch parameters
Support response files
Console Input Processing
Get keys
Perform background processing while waiting for key input

The Companion Library

Check key input for hot keys
Simulate key input
File Processing Logic
Read and process each line of a file
Find first and find next file in a directory
Traverse directory tree on a disk
Stack-Switching Logic
Switch to local stack
Switch back to caller’s stack
Pass call on to previous vector holder
String/Memory Logic
Copy blocks of memory
Fill memory
Copy/fill strings
Measure the length of strings
Check for character inclusion in a string
Display Logic
Display characters and strings
1/0 Logic
Input a byte from a port
Output a byte to a port
Conversion Logic
Convert binary to decimal ASCII
Convert binary to hexadecimal ASCII
Convert text ASCII to hexadecimal
Convert character to upper case
Miscellaneous Logic
Derive a program’s home path
Enable and disable interrupts

-—

W > o N O 0 »~ O DN

OO

<O
T
<m
—z

_-I
=

Preface

Basic Tool Design

Basic Library Design
Language Issues

Building Tools

Building Libraries
Documentation Management
User Interfaces

File and Directory Processing
Pseudocode Conventions

C Source Code Listings

On the Companion Diskette

Index

XXi

17
37
45
81
105
115
139
167
195
265

267

Xi

CONTENTS

1

Preface

Basic Tool Design

Types of Tools
The Standalone Utility
The TSR
The Device Driver

Modular Functions and Reusable Functions
Designing for Modularity and Reusability
Consequences

Filters and Pipes

Standalone Utilities versus Filters

The Best of Both Worlds

Basic Library Design

Source/Include Libraries
Resident Libraries

Dynamic Link Libraries

xXi

o & Ot W = e

XiV CONTENTS

3

4

Object Modules and Static-Link Libraries
Object Module Records

Linker Action for Object Modules and Libraries

Introduction to Link Order Control

Language Issues

Single-Language Programs
Mixing ASM Functions with an HLL Base
Mixing HLL Functions with an ASM Base

Summary of Language Models

Building Tools

The Template Files
GETSTOCK.BAT and Other Batch Files
Link Order Control for Tools
Resident/Nonresident Programming
Stack Issues
Stack Addressing with the BP Register
Stack Switching
A First-Cut Attempt
A Better Way
Accessing the Caller’s Registers
Placing the Stack Switch Calls
The Stack Pocket Technique
TSR Specifics
Device Driver Specifics
The MODOBJ . EXE Ultility
Using Other High-Level Languages

Stack Issues Revisited

22
25
27
31

37

37
40
42
43

45

45
46
48
51
53
53
56
58
60
66
68
70
70
72
77
77
77

5

6

Building Libraries

Identifying Library Candidates
An Example of Layering
Shell Processes
Designing Functions for Library Inclusion
Bottom-Up Design
Planning for Future Growth
Error Handling

Information Hiding, Encapsulation,
and Abstraction

Private and Public
Private Global Variables
Public Global Variables
Granularity
Private Helper Functions
Function Hooks
Video Driver Hooks
Getkeys Hooks
Function Hook Wrap-up
Testing Library Functions
Traditional Libraries and Link Order Control
Header Files
Generating a Library

Library Maintenance Tips

Documentation Management

EXTRACT . EXE —Basic Operation
Program Summary Comment Blocks

Library Function Comment Blocks

Contents XV

81

81
82
83
83
84
84
86

87
88
88
90
91
91
92
93
95
98
98
99
99
100
101

105

106
107
108

XVi CONTENTS

EXTRACT.EXE—Parameters 109
Running EXTRACT.EXE from a Library Makefile , 112
7 User Interfaces 115
Command Line Parameter Parsing 115
Fixed-Position Parameters 115
Multiple File Specifications 116
Switch Parameters 117
Setting Up the Parsing Logic 119
Calling the Parsing Logic 124
Parsing Logic for Switches 125
Parsing Logic for Fixed Parameters 126
Parameter Defaults 127
Console Input Processing 128
The Polling Hook 131
The Filter Hook 131
Hook Function Interfacing 132
The Library Functions 132
Macro Peculiarities 133
Mouse Movement to Cursor Key Emulation 133

A Console Stack 135
Executing Multiple Threads 135
Coding for Reentrance 136
Interactions Between Hook Functions 136

8 File and Directory Processing 139
File Processing 140
Directory Processing 147

A Directory Search Library Module 148

A

B

Contents

The Need for List Building
Processing a Series of Source Files
Tree Processing
The Tree Structure
The 1lc_build._tree() Function
The 1c_trace_tree() Function
The lc_free_tree() Function
Interconnections
Wildcard to Wildcard Transformations

Filter-Style File Processing

Pseudocode Conventions

Action Charts

Function Brackets

Logic Statement Constructs

Levels of Detail in Pseudocode

Simple Data Declarations

Structure Declarations

Arrays and Strings

Pointers and Hex Numbers

Function Declarations and Return Values
Operators and Readability

Controlling Execution Flow

Defined Constants and Reserved Variables
Comment Headers

Translation to Actual Code

C Source Listings

lc.getcmtail()
lc_get.ddtail()

XVii

151
153
155
155
158
158
161
161
162
165

167

167
169
170
172
173
175
176
177
180
182
186
188
188
190

195

195
197

Xvili

CONTENTS

lc_rspfile()
lc_parse.svw()
lc_parse_fx ()
lc_swp_assign()
lc_fxp.assign()
lc_isempty()
lctrim.parm()
lc.inset()

lc_disp.char(), lc.disp.str(),
lc_disp.err_lead()

lc_setup.showsw(), lc.report.showsw()
1lc_toupper()
lc_getchar()
lc_getfname()
lcverify hex_£x()
lc.verify hex.sw()
lc.verify hexstr()
lcfind files()

lc trace dir()
free lptr list()
lc.trace.dirl()
lc.tracdir prep()

lcbuild.tree(), lc.trace.tree(),
lc_free_tree()

lc_eat key()
lc_getkey.set()
lc beep()

lc_set_phook(), lc_set._fhook(),
lc_set.ahook(), lc_getkey (),
lc_.ifkey()

lc_process.src_parms()

198
200
206
210
211
212
213
214

215
217
219
220
222
224
225
227
229
232
234
235
239

240
248
249
250

251
255

lc_home_path()

lc.form. template(),
lc.translate_template()

lc_subst meta()

On the Companion Diskette

Installing the Companion Toolset

Index

Contents XiX

258

259
262

265

265

267

CHAPTER 1
Basic Tool Design

In this chapter we’ll take a look at some of the basic aspects of tool design.
Because building tools and libraries are often interdependent practices, you'll
find that this chapter on tool design also discusses libraries and the chapters
on library design cover the construction and design of tools as well.

This may seem like a lot of bouncing back and forth. At times, it may
even seem like we're building a house both from the ground up and from
the top down. In fact, that is precisely what is being done, such is the nature
of interdependence.

TYPES OF TOOLS
The Standalone Utility

The standalone utility is the most familiar and common form of program.
Most likely, you have used this type of program many times. Its code and data
are contained within a file of the .COM or .EXE type. If you've assembled
or compiled the obligatory “Hello world” sample program in your favorite
language, then you've already made a standalone utility.

Standalone programs can be invoked manually from the command line
or from within a batch file, or they can be executed as a child process of
another utility program, such as a command shell, that allows you to start
programs by pointing to their name in a list or by clicking on an icon. This
type of tool can be as simple as the TREE utility included with MS-DOS, or
it can be a more interactive tool—one that presents menus and prompts such
as a spreadsheet or a CAD package. This book focuses on the development of

1

