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Preface

One of the shelves in my office is lined with books that have linear or non-
linear programming and optimization in the title. Why then write another
linear programming book ? Because I think it is useful to include the basic
methods and a broad survey of applications under a single cover. Most of the
dozen or so books I have used in my course since 1969 stress the mathematics
of linear programming (e.g., Gass, Hadley, Simmons, Dantzig, Smythe and
Johnson, and Spivey and Thrall). None emphasizes the range of linear pro-
gramming applications that are relevant to students of socioeconomic and
environmental management. Most books acknowledge the existence of only
transportation applications. Those that do contain applications tend to
present the proven applications, a few applications in depth, or linear pro-
gramming and other models (e.g., Stark, Helly, Salkin and Saha, Driebeck,
and DeNeufville and Marks). The major objective of this book is to stimu-
late new applications of linear and related programming by specialists and
nonspecialists by providing many of the already reported uses of linear and
related optimization techniques and the basic methods under a single cover.

This volume was molded on two other perspectives which, while not novel,
are geared toward the nonspecialist student. Optimization models have be-
come a tool that must be understood not only by the industrial engineer,
operations research analyst, economist, and mathematician, but also by the
planner, geographer, regional scientist, civil engineer, public servant, and
other people without extensive mathematics backgrounds. Therefore, the
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xii / PREFACE

second major goal of this book is to prevent the mathematics of linear pro-
gramming from acting as a barrier to the potential user. While all users or
readers of linear programming should understand the mathematics, they
can understand it without corollaries and lemmas and mathematical
presentations that assume backgrounds which many students do not possess.

A third goal of this book is to quickly move the student from the book to
the computer. This goal is derived from years of teaching and talking with
people who had not taken linear programming but were determined to look
over the analyst’s shoulder, people who had a course in linear programming
but were never exposed to computer codes, and people who were unfamiliar
with the plethora of information one can acquire beyond the optimum solu-
tion.

The three goals of this book are accomplished in ¢leven chapters. The first
three chapters present the theory and mathematics of linear programming.
Chapter 1 introduces the concept of optimization, a geometric interpretation,
the mathematical formulation and solution, and a brief history of standard
and new applications. Chapter 2 presents the essential matrix mathematics
for solving linear programming problems. The simplex procedure is presented
as the most useful technique for the potential user. Diagrams are used to
demonstrate the feedback between the single- and two-phase solutions.
The third chapter highlights special properties of linear programming (the
dual and postoptimal analysis) and other optimizations methods (e.g.,
mixed integer, branch and bound, dynamic, and heuristic).

The fourth chapter presents MPS/360 and MPSX/370 computer codes
for solving linear programming problems. Methods of preparing job con-
trol, system, and data cards are presented. System options are explained,
including postoptimal analysis. Sample printouts are displayed and inter-
preted.

Chapters 5-11 provide applications of interest to planners, managers,
economists, environmental and regional scientists, geographers, civil
engineers, and public servants. Each chapter has three components: a broad
overview of linear programming applications, one or more examples to be
solved by the reader on the computer, and a bibliography. The author has
chosen to emphasize breadth rather than depth in the application chapters.
Five areas of application are presented: solid waste in Chapters 6 and 11;
water resources in Chapter 7; health, education, and law enforcement in
Chapter 8; intraregional land use and transportation in Chapter 9; and
economic development and transportation in Chapter 10. Within each
chapter, as much breadth in applications as possible is presented.

The breadth approach has three important advantages. First, the user
should see the great extent to which applications vary. For example, in
some applications optimizing behavior seems like a reasonable assumption;
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in others this is dubious. Some applications require a readily available and
a narrowly defined data set ; others have data requirements that must be met
with estimates. Numerous examples are necessary to highlight the subtle
and sometimes not so subtle differences between problems. Second, with the
exception of a few review articles, the vast majority of the applications in this
book are available only in technical literature that may be difficult to locate
and/or to readily comprehend for the nonspecialist. More than sixty percent
of the applications in this book have been published during the 1970s. By
bringing together many of the recent applications under a single cover, it is
hoped that the inventory in and of itself will spawn new applications.

The breadth approach to applications has drawbacks. The most important
drawback is overselling optimization. Optimization is only one of many
mathematical and nonmathematical approaches used in the socioeconomic
and environmental sciences. In many of the disciplines presented in the book,
linear programming is not the most important mathematical tool. To mitigate
against misrepresenting the role of linear programming, Chapter 5 compares
optimization and other approaches and presents guidelines for mathematical
programming applications. Chapter 11 expands on Chapter 5 through a
case study.

Another important decision was to aggregate the applications on the basis
of disciplines rather than by type of application. The latter includes such
groupings as personnel allocation, transportation, siting, and capital re-
placement. A discipline classification appeals to the discipline specialist who
may be primarily interested in solid-waste and water-resources applications,
or land-use and transportation applications. This book gives the discipline
specialist the opportunity to select one or two of the applications chapters to
read in depth.

The discipline approach will not appeal to the reader who perceives
applications as multidisciplinary. To this reader, sitings of a landfill, a hospi-
tal, a school, or other facilities are similar. The author decided on discipline
aggregation because the vast majority of people with whom he spoke favored
the discipline classification.

Recapitulating, the three major goals of this volume are to teach the mathe-
matics of linear programming in as simple a manner as possible, to move the
user to the computer as soon as possible, and especially to stimulate interest
in new applications by presenting numerous examples of the use of linear
and related programming. Overall, this book is intended to serve the large
body of readers who are primarily interested in applications, not mathe-
matics.
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Chapter 1

Theory, Methods, and Applications

Linear programming is a specialized mathematical decisionmaking aid. In
and of itself, it has no socioeconomic or environmental content. Like other
widely used mathematical methods (e.g., regression, input-output analysis,
and the calculus), it can only help us interpret data and to examine theories
about the way things work or should work. If the data are spurious and
incomplete, or ifthe match of modeland theory isinappropriate, mathematical
decisionmaking aids such as linear programming are more likely to confuse
rather than clarify a decision. Given these important caveats, linear pro-
gramming was developed for specific classes of applications which assume
optimal behavior, linear relationships among different pieces of information,
and partially restrictive specifications.

A. OPTIMAL BEHAVIOR

You must be able to assume optimal behavior if you hope to learn by
applying linear programming to a problem. Optimal behavior implies that
decisionmakers are aware of all the important information and will choose
the most favorable decision, or at least would like to know the best decision.
Not everyone can agree on the criteria for the best decision. Some people
regard economic gain as something to be maximized; others prefer to mini-
mize the use of resources. Still others seek to minimize political turmoil and

3



4 / 7: THEORY, METHODS, AND APPLICATIONS

others have additional “most favorable” criteria. Different most favorable
criteria are based on the different philosophies and roles of the decisionmakers
and the different information supplied to them.

Optimal behavior has been one of the cornerstones of economic theory and
operations research.! Economic theorists, operations analysts, engineers, and
others have assumed optimal behavior in modeling many private and some-
times public decisionmaking processes. However, it seems apparent that
decisions are influenced by political, sociological, and psychological factors.
While proponents of optimization assume that economic decisions are made
on the basis of carefully reasoned debate, other theorists argue that decisions
are more like psychological dramas in which the players, loaded with personal
perspectives and axes to grind, arrive at clearly suboptimal decisions.

Most institutional decisions probably are made with explicit notions of
optimal behavior and implicit psychological motivations. When the weight of
the decisionmaking process is more on the side of information analysis than
personal motivations, then optimal behavior is a possible behavioral theory
from which to operate. However, if data are manipulated to support a pet
intuition or past practice, or both, then optimal behavior cannot be assumed
or may be assumed to occur only over a narrow range of decisions, most
likely routinized operating decisions. On the whole, optimal behavior is most
likely to be found when decisionmakers want to consider a relatively limited
range of policies and choose from a broad range of specific alternatives drawn
from each major policy. The limited range of major policies enables decision-
makers to grope toward specific tradeoff and contingency choices which can
be modeled to seek optimality.

When optimal behavior is a reasonable-looking assumption, then the
following mathematical conditions should exist if linear programming isto be
used: constraints that partially restrict the range of the solution, nonnegative
solutions, and linear relationships among the components of the problem.

B. MATHEMATICAL CONDITIONS FOR A SOLUTION

Linear programming may not be the appropriate decisionmaking aid, even
when optimal behavior is assumed. Calculus is used to solve many optimiza-
tion problems. Calculus methods cannot solve optimization problems with
imprecise specifications and with nonnegativity requirements.

Imprecise specifications typify the socioeconomic and environmental
planning sciences. For example, a water supply manager seeks to find a least-

' For a spectrum of viewpoints on optimality and decisionmaking, see Clarkson (1968),
Ansoff (1969), Pugh (1971), and Starbuck (1971).
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cost solution to meeting a public potable water demand of 10 million gallons
per day (mgd). He may draw his supply from the local reservior or from a
pipeline to an adjacent town. A solution that supplies 9.9 or less mgd or
10.1 mgd or more is not acceptable. The resource manager therefore seeks a
least-cost solution while constrained by a specific demand requirement. If all
the restrictions are as specific as the 10.0 mgd demand restriction, calculus can
usually be used to solve the problem. Typically, however, other constraints are
present but are not precise. The water supply manager’s local reservoir and
pipeline are likely to have imprecise constraints. The local reservoir has a
daily yield of 5 mgd, which may not be exceeded. The manager can pump 5
mgd, but he may also pump less than 5 mgd. The reservoir restriction is an
inequality rather than an equality. The pipeline also has two inequality
restrictions. On the one hand, the community can only take 10 mgd because
of the size of the pipeline, on the other, by contractual agreement it must take
out at least 6 mgd. These typical inequality constraints may be treated with a
linear programming formulation.

Another constraint is that the manager is not allowed to transfer negative
amounts of water from the sources of supply to the areas of demand. This
constraint is obvious to people but not to the computer. To the computer, it is
cheaper to ship 5 mgd than 10 mgd, then why not ship —5 mgd? Linear
programming problems are written with >0 constraints to prevent negative
allocations.

Linear programming is one of a number of mathematical programming,
tools which seck a least-cost solution to meeting imprecise specifications.
What distinguishes linear programming from the other mathematical
programming techniques, which are briefly reviewed in the third chapter, is
that linear programming requires linearly proportional relationships. The
resources to be consumed by an activity must be linearly proportional to the
level of the activity. For example, if the planner wants to double the number of
garden apartments of a particular design in the community, then the amount
of land and public services required for the previous garden apartments
would have to double.

Similarly, the contribution of the activities to the goal thatis to be optimized
must be linearly proportional to the activity level. If 100 garden apartment
units will cost the region $100,000 to service, then 200 garden apartment units
will cost $200,000 to service. Economies and diseconomies of scale are not
recognized. Finally, when added together, all activities must obey a materials
balance. The sum of the resource inputs must equal the sum of the product
outputs. Summarizing, linear programming is a mathematical tool for
obtaining optimum solutions that do not violate imprecise constraints, that
cannot have negative activities, that require linearly proportional relation-
ships, and that account for all inputs and outputs within the system.
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C. AN ILLUSTRATION OF DIFFERENT SOLUTIONS

At this point, it is appropriate to illustrate the theory and mathematical
requirements of linear programming. Let us review the water manager’s
problem. The water department can utilize reservoir water which costs $300
for a million gallons or pipeline water which costs $500 for a million gallons.
The reservoir water will be called activity X, ; the pipeline water will be called
activity X,. The community wishes to minimize the cost. The total cost and
objective of the manager can be written as the following objective function:

Minimize cost: Z = 300X, + 500X, (N

We remember that the total demand for water is 10 mgd. Accordingly, the

following equation states that activities X, (reservoir)and X , (pipeline) must

supply 10 mgd:

Equation (2) is an example of a rigid specification, or equality constraint.

Next, the water manager is permitted to take only 5 mgd from the reservoir:
X, <5 3)

Equation (3) exemplifies imprecise specifications, or inequality constraints.
Next, we need two constraints that specify that the pipeline can yield only
10 mgd, but that it must be used for more than 6 mgd:

X, <10 @)
X,26 (5)

Finally, we cannot supply negative amounts of water, so we need two non-
negativity constraints:

X, =0 ©)

X,>0 (7

The entire linear programming problem is summarized in the following:

Minimize: Z = 300X, + 500X, n
subject to the constraints

X +X,=10 (2)

X, < 5 3)

X, <10 4)

X, > (5

X, > 0 (6)

X, = )
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X, reservoir activity, mgd

1 L
o 5 10

X, pipeline activity, mgd

Fig. 1

This is the standard form for a linear programming problem. Let us briefly
review the theory and mathematical conditions in this problem. The objective
function assumes that the optimal least-cost choice is being sought. Equations
(3)-(7) exemplify the imprecise inequality restrictions, and Egs. (6) and (7)
represent nonnegativity requirements. The proportional linear relationships
are obvious in the objective function and the constraints (e.g., $300 for 1
million gallon from X, $600 for 2 million gallons, $900 for 3 million gallons,
etc.). Finally, the outputs of water from the two sources of water equal the
inputs of water to the areas of demand.

1. A GRAPHICAL METHOD

In this section, we will review a graphical solution to a linear programming
problem. Graphical solutions are impractical for real-world applications
since most decisions involve many possible activities and many constraints.
Nevertheless, the graphical solution is a device that may be used to explain
how the more abstract algebraic methods are used to solve a linear pro-
gramming problem and the possible solutions that can be obtained from a
linear programming problem.

To picture the solution graphically (Fig. 1), we label one axis as activity X
(reservoir) and the other axis as activity X, (pipeline).

2. FEASIBLE SOLUTION

First, we seek a feasible solution. When a feasible solution has been found,
then an optimal solution is sought. We find a feasible solution by drawing
each constraint on the graph and locating the area of feasible solutions. The
first constraint [Eq. (2)] is graphed in Fig. 2.



