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PREFACE

THE aim of this book is to present a treatment of the factors involved in the
design of cold cathode discharge tubes which is as comprehensive as a single
volume will allow. It has been found convenient to divide the book into two
parts. Part I is concerned with the theory of the fundamental processes of
electrical discharges in gases. These theories lay the foundations for Part II,
which deals with the application of these ideas to the design of actual tubes.
The book is largely based on a course of post-graduate lectures given in the

Department of Physics at the Northern Polytechnic, London. The authors
are grateful to Ericsson Telephones Ltd for allowing the use of a great deal
of unpublished data and experience obtained in the laboratory of their Tube
Division,

J. R. ACTON

J. D, SwrFr
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PART I: GENERAL THEORY

INTRODUCTION

THE aim of Part I of this book has been to present a reasonably comprehensive
survey of the subject of conduction of electricity in gases. Although those
aspects of the subject which are directly relevant to the design of cold cathode
discharge tubes have naturally been emphasized, a number of topics not hav-
ing any direct application have been included. This has been found necessary
for the logical development of the subject.

Part I is based on a post-graduate lecture course given by one of the
authors (J. D. Swift) at the Northern Polytechnic Physics Department over
the last few years. The intention throughout has been to concentrate on the
physical principles involved, while mathematical complexity has been avoided
as far as possible.

Fundamental collision processes in gases are briefly discussed in an intro-
ductory chapter. A full treatment of this subject is beyond the scope of this
book, however, and the interested reader is recommended to consult a work
such as Electronic and Ionic Impact Phenomena by H. S. W. Massey and
E. H. S. Burhop. Chapter 2 deals with the motion of slow electrons in gases.
Although this is concerned largely with the calculation of electron energy
distribution functions, a brief survey of recent microwave studies of slow
electrons is also included.

The next few chapters deal with the mobility and diffusion coefficients of
positive ions and electron-ion recombination. An account of recent afterglow
investigations is given here. Ionization by electron collision in gases is
considered in Chapter 5, while a brief discussion of electron attachment and
negative ion formation follows in Chapter 6.

Secondary ionization processes leading to breakdown are dealt with in
Chapter 7. The spark breakdown process itself is discussed at some Iength in
Chapter 8. The emphasis here is on breakdown phenomena at low gas
pressures (< 500 mm Hg), and little has been said regarding sparking at
pressures exceeding atmospheric.

The last two chapters of Part I are devoted to low current self-maintained
discharges and glow discharges. The cathode region of the glow discharge has

1



2 COLD CATHODE DISCHARGE TUBES

naturally been the main concern, but some account of the positive column is
also included. High frequency and arc discharges have not been discussed,
these topics being outside the scope of this book.

Although a number of references are included at the end of each chapter of
Part I, no attempt has been made to give a comprehensive bibliography, and
the author wishes to apologize for any important omissions.
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FUNDAMENTAL COLLISION PROCESSES

1.1. COLLISION CROSS-SECTIONS

In discussing electrical discharges in gases we shall be very frequently concerned
with problems involving collisions between electrons, ions, and gas molecules.
1t is convenient, therefore, to begin by defining a suitable coefficient which will
be a measure of the probability of a particular collision process.

Consider a beam of 7 particles of homogeneous velocity ¢ moving through
a gas containing N molecules per cubic centimetre, the particle concentration
being much less than N and the molecular velocity much less than ¢. Then
the number of particles suffering collisions per second d[f is proportional to
N, ¢, and 1. Hence
fl—]=M]¢c ... (1.1
I
where the constant of proportionality g., which has dimensions [L]?, is the
total collision cross-section. The above definition may be extended to include
the various types of collision that may occur.

It is sometimes more convenient to use the mean free path Ac for the type
of collision under constderation. Since dJ = (c/Ac)I we have

1

A = —— e (1
= (1.2

1.2. ELASTIC COLLISIONS

If ¢ is sufficiently small the only type of collision that need be considered is
an elastic collision; this involves a redistribution’ of the kinetic energy but
no changes in the internal energy of the interacting particles,

We will consider the simple case of an elastic collision between two spherical
particles of masses m and M (see Figure 1.1). Suppose the velocity of m
before the collision is ¢, while M is initially at rest. If m rebounds with vel-
ocity ¢, at an angle ¢ to its initial direction of motion we have, from con-
siderations of conservation of momentum and energy

mc — mc, cos 8 = Mw cos ¢ ... (1.3)
mc, sin § = Mw sin ¢ ... (1.9
imc® — ymci = fMw? ... (1.5)

3



4 COLD CATHODE DISCHARGE TUBES

w being the velocity of M after the collision. From these equations we obtain

I ccos¢ 1.6
=M tm .. (1.6)

L4

Figure 1.1. Elastic collision of two particles

If f(6) is the fraction of its energy that the particle m loses in the collision then

c2—c2 Mw?

1) = )
c m c
4Mm .
Hence f(e) = m'cos ¢ . . (17)

1.3, ELECTRON-ATOM ELASTIC COLLISIONS

In this casem € M and 6 ~ = — 2¢. Hence

J(6) ~ -25-(1 — cos ) ... (1.8)

Let g be the total elastic collision cross-section for electrons of velocity c.
Thus Ngcc is the fraction of the electrons suffering collisions per second.
Consider those collisions in which the electron is deflected through an angle
between & and @ + df into a solid angle d == 2= sin & df (Figure 1.2). Then

\

A\
-
~——

\
'\

3
\

i
]
fin
-L
3
1

/

Figure 1.2. Differential collision cross-section



FUNDAMENTAL COLLISION PROCESSES 5

a(c,0) d2 is the differential cross-section for elastic scattering through an
angle ¢ into the solid angle d2. Hence

K1

Ge = wao(c,O) sin 6 d6 (19

0

Since [o(c, §) d©2])/q. is the fraction of the collisions that result in a deflection
through @ into df2 and f(9) is the fractional energy loss of the electron in each
such collision, we have for the mean fractional energy loss per collision

T T
2 2m 2
jfo(c,&)f(ﬂ) sin9dg =027 frr(c 0)(1 — cos 8) sin 0 dé
Qco M gqc
_am O
~H
™
where Qc = 2 _[ o(c,8)(1 — cos 8) sin 8 df ... (1.10)
0

The mean fractional energy loss per electron per second is then

%%ch =%—NQcc )
It is seen that if the total elastic cross-section g is replaced by Q¢ then the
average fractional energy loss per elastic collision fe; may be taken to be
(2m/M). The quantity Q. is frequently referred to as the momentum transfer
cross-section.
In the case of ideal elastic spheres the scattering is spherically symmetrical,
all directions of motion after a collision being equally probable. The differ-
ential collision cross-section is then independent of 8 giving

oo =2 and Q. = ge L. (1.12)
4z
Then P(6) d6, the fraction of the collisions resulting in deflections between 8
and 8 4- df, which in general is

a(c,0)
de

becomes 4 sin 0 d0. The average value of 8 is then =/2. .

For sufficiently slow electrons the scattering is spherically symmetrical
and the two cross-sections Qc, gc are thercfore equal. At higher energies
there are serious divergences from the ideal case! (see Figure 1.3). Q¢ and ¢
only differ appreciably when there is a pronounced concentration of scattering
in either the backward or forward directions. In Figure 1.4, which compares
the values of Q. and g¢ for helium, neon, and argon, the values of Q. are
obtained from the observed angular distributions. (Cross-sections are

2mwsin0.de
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i

0-5F

P () —>

10 eV electrons in He

Ideal elastic spheres
Figure 1.3. Elastic scattering of electrons

normally measured in units =a5, where a, = 0-53 X 10-8 cm = the radius
of the first Bohr orbit of the hydrogen atom.) It will be seen that the assump-

tion that fo; = 2m/M can frequently be made without serious error. If the
mean energy & of the gas molecules cannot be ignored compared to the

energy € = }mc? of the electron the expression for fe1 is modified as follows

2m 4 Eg
1= — {1l —-— ... (1.13
fa=22(1-3%) (1.13)
T T
6
T I AN -
~NO { \‘\
E ! . 16&:" N .
) ™,
5 ;‘ \\“ 0
£2 i 1oe AT -
. j
o O L ©
20 40 60 O 20 40 60 0 20 40 60

Electron energy =+ (eV)

(=]

Figure 1.4. Comparison of momentum transfer and total elastic cross-sections for (a)
helium, (b) neon, and (c) argon. After Massey and Burhop, reference 1, p. 15

If the electrons also have an energy distribution with a mean value é, then
.11

2m
T -A_[(l — &f€)
The exact value of the numerical factor does, however, depend on the form

of the distribution function.

The marked dependence of gc on the electron velocity ¢ was discovered
independently by Ramsauer? using electron beams of homogeneous velocity,
and by Townsend and Bailey using a more indirect method involving electron
swarms (see sub-section 2.3.4). The notable transparency of the heavier

rare gas atoms towards electrons of energy ~ 1 eV is frequently referred to

as the Ramsauer-Townsend effect (see Figure 1.3).
Tt must be emphasized that the observed variation of P(6) with 8 and g
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Figure 1.5. Total cross-section curves for argon, krypton, and xenon

with ¢ cannot be explained on the basis of a classical description of the
scattering of an electron by gas atoms. If a quantal description of the process
is used, the electron is regarded as being represented by a wave packet and
the results can be accounted for on the basis of the diffraction of the electron
wave by the field of the atom.

Actually, on classical ideas the total collision cross-section ¢ approaches
infinity as the angular resolving power of the apparatus is increased since
some deviation will occur as long as some field exists between an electron and
an atom. This difficulty disappears when quantum uncertainty effects are
allowed for,® and a finite value of g. is predicted provided the force between
an electron and an atom falls off at large values of the separation r faster
than 1/r3.

1.4. POSITIVE ION-ATOM ELASTIC COLLISIONS
We must now return to the general equation for f(6) the fractional energy
loss of a particle min a collision with A involving deflection # (equation (1.7))

f6) = -cos? ¢

(M + m)?
and consider the case where m and M are of the same order of magnitude.
Let the radius of M ber.

The probability of a collision taking place with the angle of impact ¢ in the
range dé is equal to the ratio of the projected area 2r sin ¢.cos ¢.r d¢ to the
whole area presented for collision %, namely 2 sin ¢.cos ¢.dé. We thus
obtain for fe1, the mean fractional energy loss per collision

/2

-fcos"«ﬁ.sinnggS =

0

2Mm
(M -+ m)?

8Mm

= Gy ... (1.15)

fe1
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If m = M, this gives fe1 = 0-5. This shows that positive ions which are
receiving energy from an electric field will, in general, lose a large fraction of
this energy in elastic collisions with gas atoms (see Section 3.1).

Equations (1.3) to (1.5) give 8 = (=/2) — ¢ if m = M. Thus P(8)dé, the
fraction of the collisions that result in deflections between 6 and 6 4 d#, is
given by (see Figure 1.6)

P(8) = sin 20 ... (1.16)
1_ -
S
Q
0 3
8 =—>r

Figure 1.6. Elastic scattering of ions and atoms of equal mass

Since P(f) is only finite for 0 < # < /2 this indicates that only forward
scattering occurs. In view of this result, persistence of velocities is important
in the theory of the motion of positive ions in gases (see Section 3.D).

1.5. INELASTIC COLLISIONS BETWEEN ELECTRONS
AND GAS ATOMS

Provided the electron energy € = jmc? is less than the difference in energy
between the lowest excited state and the ground state of the atom only
elastic collisions can occur. When e exceeds this critical value, however,
excitation of the gas atoms can take place. We may define a cross-section gn
for the excitation of the nth state of the atom, i.e. Ngnc is the fraction of the
electrons of velocity ¢ undergoing collisions of the given type per second.
If € > ¢, the minimum ionizing energy of the gas atoms, a similar cross-
section ¢i for ionization collisions must be included.
Thus, in general the total collision cross-section ge may be written

Je=qoc + 290 t a (Y

where goc now represents the total elastic collision cross-section and the
summation includes the various possible excited states.

It is sometimes convenient to introduce the probability of a particular
type of collision taking place. Thus the jonization probability Kj is given by

Ki = qi/ge ... (1.18)

and varies with electron energy as shown in Figure 1.7.* Thus for argon Kj is
a maximum when the electrons have an energy ~ 125eV and even then less
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than half of the collisions result in ionization. For electron energies less than
3¢, K is given approximately by

Ki ~ a(e—e) .. (1.19)

Knn = qu/qe, the excitation probability for state n, as a function of ¢ has
different forms according to the excited state involved. The curve for the
excitation of a singlet state has a rather broad maximum at an energy value
several times the minimum excitation energy enn, decreasing slowly at higher
energies. On the other hand, Kun for a triplet state rises to a very sharp
maximum just above epn after which it falls away rapidly (Figure 1.8).5

0-5 T T T
A
0-4- -
Hg
03r = . - :
3
02k He ] ] ] |
s f 4
3
o1 - | .
I- =
] 1 1 : 1 |
0 100 200 300 0 50 100 150
Electron energy w—» (V) Flectron energy =—» (V)
Figure 1.7. Ionization probability of elec- Figure 1.8. Excitation probability
trons in argon, mercury, and helium. After curves for singlet and triplet levels of
Arnot. Collision Processes in Gases, p. 39 helium. After Arnot. Collision Pro-
(Methuen, London, 1950) cesses in Gases, p. 33 (Merhuen,
London, 1950)
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MOTION OF SLOW ELECTRONS IN GASES

2.1. CALCULATION OF ELECTRON ENERGY
DISTRIBUTION FUNCTION

2.1.1. Introduction

Let us suppose that an electric current traverses a gas in which a uniform
electric field X exists. The electron current is supposed to be sufficiently small
for interaction between electrons to be unimportant compared with collisions
between electrons and gas molecules.

In general, the energy distribution of the electrons will depend on the
distance x which the electrons have travelled under the action of the ficld X.
However, provided the distance x is sufficiently large and the electron current
density is constant, the energy distribution attains a steady value independent
of x. We shall be concerned at present with this case where the average rate
of supply of energy to an electron from the field is equal to the average rate
of loss of energy in collisions with gas molecules.

The detailed calculation of electron energy distributions is, in general,
highly complex and only certain simple cases will be considered here. How-
ever, it may be noted that for a given gas the distribution depends only on
XA, the potential difference per mean free path of an electron. This quantity
is generally expressed in the form X/p, where p, is the gas pressure reduced to
0° C. This can be done because the mean free path A is inversely proportional
to the gas density.

Now provided X/p, is not too large, two simplifying assumptions may be
made: (1) The energy gained by an electron from the field in one free path is,
in general, small compared with the energy of the electron, €; (2) A negligible
number of electrons acquire sufficient energy to enable them to ionize gas
molecules on coilision. It is an obvious consequence of (1) that the electron
energy distribution is very nearly isotropic.

Since the mass of an electron m is very small compared with the mass of a
gas molecule M, it is clear that the average fraction of its energy that an
electron loses in a collision with a gas molecule f will be much less than 1
provided the collisions are mainly elastic. (It was shown in Section 1.3 that
fa >~ 2m/M.) It obviously follows from this that only in the limiting case of
infinitesimally small X/p, values will the electron swarm be in thermal
equilibrium with the gas. In general, for finite X/p, the mean energy ¢ of an
electron in the swarm is much greater than $«7.

10



MOTION OF SLOW ELECTRONS IN GASES 11

If the electric field X and hence the drift motion of the electrons are confined
to the x direction, we can assume that the electron energy distribution
function is homogeneous and isotropic in any yz plane. The function should
then depend only on the actual speed of an electron ¢ and on the velocity
component in the x direction ¢. Let F(c, £) dy be the number of electrons per
unit volume whose velocity components lie in the range dy = dé.d».d{
(Figure 2.1). F can be expanded in a series of Legendre functions of £/c

Fe.§) = Fi0) + B2 @ +PE) Fo + - ..
n
A dy
=
e
A C
/
’/l
J/"
| e
—p L

4

Figure 2.1. Electron velocity distribution function

The spherically symmetric term F, is much larger than the higher order terms
because of the disordering effect of collisions. This expansion is rapidly
convergent for the cases to be considered here. We can therefore write

Fe.d) = Fe) + 5B L@

where Fy(c) is normally a small term determining the drift motion due to the
applied field X.

F is determined by considering the balance between loss and gain of
electrons in the velocity element dy. We shall calculate first of all the net
number of electrons leaving dy per second due to the field a dy.

2.1.2. Calculation of ‘a’

The acceleration of an electron due to X is eX/m. This will be, therefore,
the velocity with which the point representing the electron in velocity space
is displaced in the x direction due to the field. Hence, the number of electrons
entering dy per second due to X is

b's
E F.dndl
m



