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Preface

The inspiration for this volume came from teaching a course in mathematical
ecology to a group of undergraduate and graduate biology students. I started
putting together the notes from which this book evolved after four years of
experience in teaching that course, during which I found that the math anxiety
of the students was frequently a real handicap to their desire to understand
mathematical ecology.

Tosidestep this anxiety I developed a problem-solving approach to the subject,
starting with extremely straightforward problems and progressing to the more
complex as the students grew in understanding and self-confidence. Judging
from both student claims and their actual performance on exams, this approach
has been extremely effective. Students routinely report that for the first time in
their lives a mathematical subject makes sense to them and that the progressive
nature of the problems makes it such that the mathematics never seems to get
any more difficult.

My original notes have been class-tested now for seven years and revised each
year on the basis of the students’ comments and criticism. This book now in-
cludes the ideas of more than 150 advanced undergraduate and graduate biology
students. Particular care has been taken to ensure that when the text is actually
worked through, not just skimmed, the difficulty of the problems progresses
in easy stages. Thus, in Chapter 1 students encounter an extremely elementary
introduction to the nature of the exponential function but by Chapter 8 are asked
to compute eigenvalues for systems of differential equations.

The mathematics required for this text is basic calculus and elementary linear
algebra. One need not, however, be brilliant in these two fields. A basic gut-
level knowledge of calculus (understanding the concept of a derivative and
integration and being able to integrate and differentiate simple functions) and
a working knowledge of elementary matrix manipulations (matrix addition,
subtraction, multiplication, and an intuitive understanding of the inverse of a
matrix) are quite sufficient. Much of the necessary mathematics is explained
in the text. After completing this book the student should have a working
knowledge of the important mathematical techniques needed to appreciate
the contemporary ecological literature. It is not, however, intended as a complete
survey of the latest developments in theoretical ecology.

As in any book of this sort, the individuals who contributed in one way or
another to its formation are too numerous to mention. Two people must be
singled out for special thanks: Robert MacArthur who not only introduced me
to most of the topics herein but was also the first to point out to me the problem
of math anxiety faced by most biology students, and Steve Hubbell who origin-
ally taught the course with me and suggested the problem-solving approach.



viii PREFACE

Finally, a great deal of thanks must go to approximately 150 undergraduate and
graduate students at the University of Michigan whose comments and criticisms
forced me to revise the text seven times to reach its current level. The book is as
much theirs as it is mine.

JOHN VANDERMEER

Ann Arbor, Michigan
January 1981
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Introduction

Gaining access to the literature in contemporary ecology has become a different
task than it was 15 years ago. Today a background in mathematics is a require-
ment for the serious ecologist. Without a working knowledge of certain mathe-
matical concepts the current ecological literature is virtually meaningless.
Although the training of students in ecology usually includes a brief exposure to
the more historically important mathematical results, it is only the exceptional
student who will make a special effort to develop an understanding of the
mathematical concepts that are at the base of the latest in the literature. Yet the
ability to use that literature to the full rests on that understanding. The problem
is that the average ecologist has a great deal of difficulty keeping up with modern
trends. The material herein represents an attempt to fill the void and to provide
students with an approach to many of the mathematical techniques that are
needed to appreciate contemporary ecotogical knowledge. It is not intended as a
complete, up-to-date exposition of the “latest” developments in theoretical
ecology.

This book was designed as a “programmed” learning text. Consequently
there is a specific way in which it should be used for maximum effectiveness.
It does not contain the sort of material that one can read casually, regardless of
how carefully one reads or the quality of one’s background. The explanatory
material is not meant to stand alone and therefore if one concentrates on it a
confusing picture may emerge. Rather, the exercises must be worked out as they
are presented. The following outline should be adhered to closely:

1 Read the explanatory material until you come to a set of exercises.
Before reading any further do the exercises.

3 Each exercise should be attempted without reference to the answer at the
end of the chapter. If the way in which the exercise should be done is not
evident after a few minutes of thought, look at the answer to determine
general drift but not in great detail. Go back and try it again.

4 Afterall exercises in a section have been completed (and only then) go on to
the next section of explanatory material and repeat the process.

As you complete the exercises be sure to check the answers at the end of the
chapter to make sure you have done them as I did. It is not that there is only one
way of doing them but that frequently the result of a particular exercise is used in
subsequent exercises. If your answers do not correspond to mine, you may become
confused in later exercises.




2 INTRODUCTION

Frequently the motivation for an exercise is discussed after the exercise,
perhaps a strange concept at first glance. I have found that it is most effective
pedagogically to have had experience with the mechanics of solving a problem
before the underlying principles are introduced. For some concepts the mechanics
become confused with the principles if they are introduced simultaneously. Thus,
when you approach a particular exercise and find that you really do not under-
stand why you have been asked to do it in the first place, please have patience. Its
rationale will be made evident either in subsequent exercises or in the explana-
tory text.

It is worth emphasizing that the two parts of this text (explanatory material
and exercises) are intimately related. The text was not written to allow you to read
the explanatory material and skip the exercises. The exercises are an integral part
of the whole—indeed probably more important than the other material. Many
concepts are introduced only in the exercises and often the explanatory material
is intimately dependent on these concepts.

The exercises have been developed on the basis of seven years of classroom
testing and both their number and the amount of repetition are carefully geared
to giving the student enough experience with each problem to grasp it effectively.
Some concepts are mastered only after enough practice has been gained in
dealing with the mechanics of the computations involved in their application.

By and large I have tried to keep the chapters to the same “effective” length;
that is, each chapter should require about the same amount of time for comple-
tion. Unfortunately, as judged by student use, I have not been entirely successful.
Some of the chapters are harder than others conceptually; others require more
repetitive calculations. On the whole you should find yourself spending three to
seven hours on each chapter. If you find you need more time, you may not have
the proper background for this textbook.

It may be apparent that the notation is not always consistent from chapter to
chapter. This is not an oversight. When you go to the literature to study these
techniques in recent work, you will find considerable variation in the notation
from paper to paper. Indeed such a state seems to be one source of difficulty for
students first trying to read the literature in theoretical ecology. For each type of
problem I have tried to use the notation most commonly encountered in that
topic.




1. The Exponential and
Logistic Equations

THE EXPONENTIAL EQUATION. We begin our study of demography by
stripping it of all of its complicated details. To make clear the underlying pro-
cesses that can be objectively and rigorously quantified, we reduce the individuals
in a population to particles that do nothing but replicate themselves. So, if we
begin with one individual at the present time, we will have two individuals some
time in the near future. For the sake of simplicity let us assume that all individuals
in the population replicate (produce a baby) after a particular time unit (one day,
30 years, etc.). Suppose, in particular, that each individual replicates once each
day (produces one new individual each day). Then, ifat day zero we start with one
individual, by day 1 we will have two, by day 2 we will have four, by day 3 we will
have eight, and so on. If we call the number of individuals in the population at
some particular time N(t), we have, for the above example, N(0) = 1, N(1) = 2,
N(2) = 4, N(3) = 8, and so on.

OO0 EXERCISES

1 Ifeveryindividual produces one baby per day, how many individuals will be
in the population after four days if N(0) = 15? If N(0) = 357 (Assume that
no deaths occur and that a baby produced today does not reproduce until
tomorrow.)

2 Ifevery individual produces four babies per day and N(0) = 5, what will be
the values of N(1), N(2), N(3), N(4)? (Assume here, as in the preceding
exercise, that no deaths occur and that a baby produced today does not
reproduce until tomorrow).

Repeat exercise 2 for N(0) = 10.

Compute N(t),t = 5,6, .. ., 10, for the example in exercise 2 and plot N(¢)
against r. (I

Thus, if the series we generate t =0, 1, 2, 3, 4,...,is 1, 2, 4, 8, 16, ...
obviously we can represent the relationship between N(¢) and ¢ as

>

N(@t) = 2 0
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The number 2 may be written in numerous ways (4,2 x 1,0.5™1). In particular,
it can be written 2 = a', where there are infinite combinations of @ and r which,
when plugged into a’, will yield the number 2; but we are concerned with one
particular value of the constant a. The value that we allow a to assume, by
convention, is Euler’s constant: e = 2.71828-.-. If you have recently had
calculus, you probably know why it is convenient to let a = e. If you have
forgotten your calculus, be sure that you understand that it is valid to represent 2
(or, for that matter, any other number) as ¢” and that it would be equally valid to
represent it in other ways, but that for reasons that are merely convenient and
need not concern you we choose ¢", where e is Euler’s constant and r is a constant.
Specifically, if " = 2, r = 0.693 (recall that by definition In " = r; therefore, if
¢ = 2,In 2 = r). Equation 1 then becomes

N([) — 8(0.693)1 (2)

Note that in this exercise, as well as in the rest of this book and in all of the litera-
ture, N(t) is variously written as N(z) or N, or sometimes X(t) or X,, depending
on the author or context. Frequently the functional dependence on ¢ is tacitly as-
sumed; that is, N(t) may be written as N and N(0) is almost always written as N, .

0 EXERCISES

5 Present the model populations in exercises 2 and 3 in the general form of
equation 2.

6 Ifanindividual produces 0.5 offspring per day (on the average) and we begin
with a population size of 2, what is N(15)?

Equation 2 was written explicitly with the assumption that we began with a
single individual; that is, when t = 0, N(7) = 1. To be more general we must
multiply the right-hand side of equation 2 by N(0), the number of individuals we
started with, to obtain

N(t) = N(O)e" 3

as the general equation of population growth. It is called the exponential equa-
tion. The parameter r is central to population ecology. Mathematically it is the
parameter of the exponential equation (equation 3) and biologically it is called
the intrinsic rate of natural increase. This concept is discussed at length in later
chapters. For now you should have an intuitive feeling for what it means (i.e., the
number to which Euler’s constant must be raised to obtain the replication
(reproductive) rate, as introduced in this chapter).
We note that we may rewrite equation 3 as

In N(¢t) = In N(O) + rt

and differentiate with respect to t:
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din NG
a7

Recall from basic calculus that in general

dlnx_dlnxdx_ 1dx

dt dx dr xdt
Therefore
dln N(t) .
dat
1 AN _
N(@) dr
dN(@t)
T N(@®) 4

Equation 4 is a differential equation and equation 3 is its integrated form. Both
are termed the exponential equation of population growth or simply the ex-
ponential equation.

O EXERCISES

7 If ris 0.69, what is the replication rate (number of offspring per day +1; 1
represents the adult doing the reproducing)? What if r = 1.098? What if
r =0.92? What if r = 1.39? What if r = 4.5? What if r = 6.8?

8 Letr = 0.83 and begin with a population size of 2. Plot N(t) against t for
t=0,1,...,6.

9 PlotIn N(t) against t fort = 0, 1, 2, ..., 6, for the data in exercise 8. If you
wanted to compute r from this graph, how would you do it?

10 What is the doubling time (how long will it take for the population to double
in size) if r = 0.993 and N(0) = 10? If r = 0.993 and N(0) = 20?
11 Derive a general equation for doubling time; for tripling time. O

To this point we have examined in the abstract a self-replicating population of
particles. Clearly, even at this oversimplified level we have glossed over some
fairly universal and important biological facts. Most organisms don’t “replicate”
like DNA or carbon paper. Most organisms are born, live, and die and we must
be concerned with the rate of birth and death, not with the rate of replication.

The usual procedure is to look at the per capita rate of population increase.
The per capita ratc of increase must be equal to the birth rate minus the death
rate. Thus we may write
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d N(t)
N(t) dt )

and we then see from equation 4 thatbh — d = r.

Intuitively, nothing changes. Instead of visualizing a population with in-
dividuals replicating themselves at some rate, we conceive of them as producing
offspring and being subjected to a certain probability of dying such that as a
whole the population can be said to have a death rate,

[J EXERCISES

12 In a population of Paramecium it is known that under a weli-defined set of
circumstances each Paramecium will divide twice in one day (i.e., in one day
a single Paramecium turns into four individuals. In terms of the preceding
exercises you might think of each individual as producing three babies.)
Death is unknown. What is the “instantaneous” birth rate (b in equation 5)?
What is the instrinsic rate of increase?

13 Suppose that in the course of dividing (in the example from exercise 12) 50 %,
of the time the individual that was to divide died instead. What are b, d,
and r?

14 Repeat exercise 13 but assume that 25%, of the attempted divisions resulted
in death.

DENSITY DEPENDENCE. The most trivial observations of the most casual
observer will reveal a basic inadequacy in the exponential equation, at least inso-
far as it might be applied to real populations. The equation, if taken as a model
that is supposed in some way to represent a natural population, leads to a
blatent prediction. Populations grow without limit. It is not necessary to cite
experimental evidence to show that the prediction is not borne out in nature.

Two schools of thought emerged from the realization that populations are
somehow limited in their growth (i.e., cannot follow the exponential equation
forever). One school, typified by the well-known book by Andrewartha and
Birch (1954), claimed that most populations did, in fact, follow the exponential
equation but that frequently, at more or less random intervals, the population is
dectmated by some catastrophic event. Thus natural populations behave in a
stop-and-start fashion, growing exponentially until some “disaster” forces the
population numbers down. The critical feature of this sort of approach is
that the factor that knocks the population down is independent of the number of
individuals in the population. The other school emphasized the feedback of
population numbers on population growth rate. As the number of individuals in
the population became larger there was a decrease in the rate at which new
individuals were produced and/or an increase in the likelihood of individuals
dying. Thus the basic form of population growth was not really exponential
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because the rate of growth was a decreasing function of the size of the population.
(For a summary of the debate see Erlich and Birch [1967] and Slobodkin, Smith,
and Hairston [1967].)

Most biologists now agree that many, if not all, natural populations are, at
least potentially, subject to these density-dependent constraints (even the strictest
adherents to the density-independent school will admit that some populations
are controlled by density-dependent factors). Thus it makes sense to modify the
basic picture of poulation growth as presented above to account for population
limitation of the density-dependent type.

In a general way we may say that the per capita rate of change is a function of
population size; that is,

AN _ Ny

N dt

and simply note that f(N) gets smaller as N gets larger (i.e., df /ON < 0)and that
S is largest as N approaches zero (i.e., any function that satisfies these two
assumptions will provide us with a “reasonable” model of density-dependent
population growth). Making a convenient mathematical assumption, we let f
take on a simple linear form; that is, we suppose that when N is very small
(N — 0) the population grows like an exponential equation (in a density-
independent fashion) and for every individual added to the population the per
capita growth rate is decreased by a particular amount. Thus the differential
equation of population growth becomes

dN
——t=r—aN (6)

where a is an arbitrary constant that represents the “particular” amount the
growth rate is decreased by the addition of a single individual.

[0 EXERCISES

15 For what values of N will the per capita rate be equal to zero (in equation 6)?

16 Call the largest value of N for which dN/N dt = 0 the carrying capacity (K)
and rewrite equation 6 in terms of K, r, and N only.

17 Suppose that the maximum number of individuals sustainable by the
environment is K. Suppose that the per capita rate of increase of the popula-
tion is directly proportional to the fraction of K not yet attained. What
would f(N) be? O

The equation derived in exercises 16 and 17 is called the logistic equation and is
usually written
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d—N=rN<KI_<N) ™

dt

Equations 6 and 7 are, of course, identical; the form presented in (7) is more
common only because it has such obvious biological interpretations. The
logistic equation is but one of an infinite number of equations that describe a
process of density-dependent population growth. The logistic has the simple
property that it describes a population which initially increases at an increasing
rate (like an exponential), but as N gets larger the rate of increase becomes
smaller until N reaches a maximum value (K), after which the population size no
longer changes.

This derivation of the logistic equation is simple and straightforward. Never-
theless, it does not provide much insight into the equation’s dynamical meaning
(in terms of biological processes). The following derivation is more complex
mathematically but it does provide a better understanding of what the logistic
means, biologically.

We can ask how many individuals will be in the population at time ¢ + 1,
given a certain number at time ¢, the way in which the exponential was intro-
duced. In a perfect density-independent situation we of course have the ex-
ponential equation

N(t) = N(0)e"
Let t = 1 and we obtain
N(1) = N(0)e

Let t = 2 and we obtain

N(2) = N(0)e"
But we see that " = N(1)/N(0), so that

N(2) = N(O)e"e" = N(0)e"(N(1)/N(0))
NQ2) = N(1)e,
and, in general,
N( + 1) = N(@)e" = N(HA

where we have written A in place of ¢". In this equation, it will be recalled, the
only things we have assumed about the population is that it reproduces itself and
that the rates of birth and death are invariant with respect to changing popula-
tion density.

Such are the assumptions of density independence. To modify the exponential
equation in this form we must postulate or speculate about the form that the
density dependence will take. Just as it was necessary to postulate a specific form
for f(N) in the derivation of the differential logistic equation so must we postu-
late a way in which density will affect the production of N(t + 1) by N(¢).
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Suppose we have 10 individuals in the populationatt = Oand att = 1 we get
20; that is, the population is doubled [ N(1) = 2N(0)]. Suppose also that instead
of going from N(1) = 20to N(2) = 40 (as we would expect from the exponential
law) the population goes only from N(1) = 20 to N(2) = 30; that is, it increases
by a third [N(2) = 1.5N(1)]. The “apparent” value of A went from 2 to 1.5 by the
addition to 10 individuals to the population. We might postulate that each
individual introduced into the population reduces the apparent A by a factor of
(2 — 1.5)/10 = 0.05. Accepting the postulate that each individual introduced into
the population reduces the apparent A by some particular constant fraction, we
find that the apparent value [1'(N)] must be that constant fraction of the density
independent value

1

and that it must be reduced by some amount by every new individual added to
the population. Therefore C must equal 1 when N = 0 [A(N,) = 4] and C must
increase by some constant factor as N(t) increases (we assume that each in-
dividual decreases A by a constant factor). Thus we have ¢ = 1 + a N(t), which,
applied to the above equation, yields

1

AM(N) = T3 aNG A
and the old exponential equation becomes N(t + 1) = A'(N) N(t) or
N(t
NG+ 1) = T+a('1)\l(t) @®)
When the population reaches its carrying capacity, we have
4K
1 4+ aK
1+aK =24
e
K
Equation 8 then becomes .
NGt + 1) = AN )

1 + [(4 — 1)/K]IN@®)

In fact, equation 9 is equivalent to equation 7, as shown below. Also of note,
however, is that equation 9 is frequently important practically in computing
projected population histories. Next consider equation 9 with ¢t = 0.

AN,

ND =17 [(A — 1)/K]IN,

[No = N(0)]




