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PREFACE

This International Workshop on Amorphous Semiconductors was the first
meeting held at the newly built International Training Center in Beijing, China,
between the 13th and the 18th of October, 1986. The workshop was a satellite
conference of the International Conference on Semiconductor and Integrated Circuit
Technology that took place in Beijing a week later.

150 scientists from five countries attended the workshop. With 26 invited lec-
tures and 25 contributed papers the workshop covered the current areas of research
on amorphous semiconductors with a special emphasis on hydrogenated amorphous
silicon and on multilayers made with amorphous silicon. These Proceedings have
been organized into the following chapters:

Theory and General Aspects

Preparation and Structure

Electron Spin Resonance

Density of States and Electronic Transport
Photoluminescence and Photoconductivity
Metastable Defects

Multilayers and Interfaces

Device Physics

D. X. Han served as the Secretary of the workshop. The Organizing Commit-
tee consisted of: G. H. Chen (Lanzhou, China), R. G. Cheng (Shanghai, China), R.
C. Fang (Hefei, China), H. Fritzsche (Chicago, USA), D. X. Han (Beijing, China),
G. L. Kong (Beijing, China), L. Y. Lin (Beijing, China), K. Y. Liu (Xian, China),
S. Q. Peng (Guangzhou, China), C. C. Tsai (Palo Alto, USA), and W. Y. Xu
(Tianjin, China).

We gratefully acknowledge support from the following organizations:

National Natural Science Foundation of China (NSFC)

Chinese Physical Society
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The University of Chicago

International Center for Theoretical Physics (Trieste)
Institute of Physics (Beijing)

Zhongshan University (Guangzhou)

Peking University

Beijing Polytechnic University

Tsinghua University

Beijing Institute of Aeronautics and Astronautics
Institute of Nonferrous Metals (Beijing)

Nanjing University

Shanghai Institute of Ceramics

Nankai University (Tianjin)

University of Science and Technology of China (Hefei)
Lanzhou University

Institute of Semiconductors (Beijing)

Shandong University (Jinan)

Northwestern University (Xian)

Hunan University (Changsha)

Xian College of Telegraphic Dispatch and Engineering (Xian)

This workshop was made successful by the lively discussions and the valuable
contributions of the participants.

Daxing Han

Chuang Chuang Tsai
Hellmut Fritzsche
Chicago, llinois
December 1986



he Chinese contributors would like to take this opportunity to extend their
warmest congratulations to Hellmut Fritzsche on his 60th birthday as well
as to thank him for his help in Amorphous Semiconductor research in China.
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THRORY OF AMNORPHOUS SEMICONDUCTORS

David Adler
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Techmology

Cambridge, MA 02139, U.S.A.

ABSTRACT

A thermodynamic view of the structure of covalent amorphous
semiconductors is presented, in which local configurations of
higher free energy that are accessible at high temperatures
are frozen in below the glass transition temperature. It is
shown how this leads to expomential band tails, defect
states, and the possibility of doping. Given the resulting
density of states, the possible mechanisms of electromic

transport are analyzed.

1. INTRODUCTION

It has long been known that there are often two paths from the
liquid to the solid state, depending on the rate of cooling. At
temperatures above the melting point, Tm, a sufficient concentration
of higher energy local configurations are accessible that the
structure cannot withstand shear stresses and behaves like a fluid.
If the temperature is reduced slowly, a first-order transitiom occurs
at Tm to a state with lower energy and entropy that resists finite
shear stresses and thus retains its shape. The structure then
ordinarily exhibits a long-range periodicity which reflects the
chemical nature of the constituent atoms, and the material is called a
crystal. For simple materials, the crystal represents the absolute
minimum energy arrangement, and thus is the stable phase at very low

temperatures. However, for complex alloys, it often represents a



compromise between the optimal chemical bonding and the strain energy.
When such an alloy is cooled rapidly, a different series of proceses
can then take place. Since first-order phase transitions entail
finite entropy changes, they require a finite time to occur. If kT is
decreased sufficiently rapidly that the time required for nucleation
and growth of the crystal is longer than that to freeze out the array
of states necessary to sustain fluid flow, then a disordered phase
with the large viscosities characteristic of a solid results.
Depending somewhat on the thermal history, a small range of
temperatures exist over which the viscosity increases by many orders
of magnitude; the point at which it exceeds about 1014 poise
(corresponding to a structural relaxation time of about a day), is

called the glass transition temperature, T Below T!' the material

retains its shape and thus must be charac:irized as a solid, despite
its long-range structural disorder. This phase is called a glass.
Glasses are not ordinarily the state of lowest free energy at any
temperature and pressure. They form only when the cooling rate is so
rapid that the time required to overcome the potential barrier to
crystallization is not available while the temperature is between T,
and Tg. Thus, it can be said that although glasses lose
thermodynamically, they win kinetically.

2. STRUCTURE OF GLASSES

In the absence of long-range order, determination of the local
structure of glasses is difficult and often ambiguous. In general,
however, glasses try to optimize the chemical bonding around as many
of their constituent atoms as possible. Thus, the vast majority of
atoms in a glass have their optimal values. Most of the remaining
strains are taken up by bond-angle distortions, often as much as
10%, reflecting the much smaller energy imcrease resulting from such
distortions relative to those from similar bond-length variations. It
is the spread in bond angles that directly leads to the lack of long-

range periodicity of glasses.



3. THERNMODYNAMIC VIEVW OF AMORPHOUS SOLIDS

Thermodynamics requires that for amny system at a given
temperature and pressure, the Gibbs free energy, G = E - TS + PV, must
be a minimum at equilibrium. At atmospheric pressure, the PV term
does not contribute significantly if we restrict ourselves to
condensed phases, so it is sufficient to minimize the Helmholtz free
energy, F=E- TS. Clearly, the lowest-energy state is favored at
low temperatures, while the state of highest entropy eventually
prevails at sufficiently high temperatures. As a system is cooled,
from the high—entropy gas phase, several first-order phase transitions
ordinarily occur, at which points both the energy and entropy
discontinuously decrease. However, if the cooling rate is
sufficiently rapid and the activation barrier between the two phases
is sufficiently high, the transition can be kinetically retarded, a
phenomenon known as supercooling. Glasses represent a liquid phase
cooled sufficiently rapidly that the crystallization kinetics are
retarded indefinitely.

Above the glass transition temperature, we anticipate that
thermal equilibrium prevails within the supercooled liquid phase.
Thus, the concentration of atoms of type X in a particular local
configuration i with Helmoltz free energy above that of the optimal

configuration for X, F, = E, - TS,, is given by:
Ni = NX exp(—AFi/kTs) (1)

where Ny is the concentration of X and AF; = F; - F,. Since
structural relaxations are frozen out below Tg. we expect that Eq. (1)

remains applicable for all temperatures below TE‘

4. IDEAL COVALENT NETWORKS
In order to apply Eq. (1), it is necessary to define a reference
phese, one which all the atoms have their optimal local

configurations. This phase is called the ideal covalent network. 1In

order to analyze the structure of such a network, first consider a



single-component covalent material, such as Se, As, or Si. Its column
in the Periodic Table immediately suggests an optimal coordination
number, Z, while the details of its electronic structure determines
the optimal values of the bond length, a, and the bond angle, 6. A
subclass of ideal networks, which possess the optimal values of Z, a,
and @ for each atom, exhibits long-range periodicity and represents
the structure of crystalline solids. When the ideal network exhibits
no long-range order, it forms the basis for the structure of amorphous
solids.

Phillips1 called attention to the fact that the actual value of Z
has major practical significance. Since each bond connects two atoms,
fixing all the bond lengths introduces Z/2 constraints per atom. In
addition, setting the bond angles adds anmother Z(Z-1)/2 contreints per
atom, resulting in a total of 22/2 such constraints. Since each atom
in ordinary three-dimensional space has three degrees of freedom, then
only if Z ¢ J6 = 2.4 can all the required constraints be fulfilleld in
a random network. WhenZ > 2.4, the ideal networks are possible, in
general, only in curved spaces that represent projectioms from spaces
with higher dimensionality. For amorphous Se (Z = 2), there is no
problem in forming flat ideal networks, and, in fact, the material
often exhibits intermediate-range order. In contrast, for amorphous
8i (Z = 4), an eight-dimensional space may be necessary to avoid
strains. In any event, the local configuration around each atom in
the ideal network determines the value of F, needed to apply Eq. (1).

For multicomponent alloys, the chemical nature of the different
types of atom requires the introduction of a much wider array of
parameters, Zi' L and eijk. Nevertheless, for any particular
alloy, there are optimal average values for all these parameters, and

we can evaluate Fo' even if the ideal network is inaccessible in flat

three-dimensional space.

5. BCITED STATES
In general, several types of local structural deviations away

from the ideal covalent network are possible. These include



continuous variations in bond lengths or bond angles (distorted
bonds), and discrete deviations in either coordination number or the
nature of the nearest neighbors (defects). In each case, we can, in
principle, determine the creation energy, AE;, and free emergy, AF;,
for the deviant structure, relative to those of the ideal
configuration, At any given temperature, T, if thermal equilibrium
prevails, the probability of any such structure is proportional to
exp(-AFi/kT). As recently pointed out by Bar-Yam et al.,2 some
networks that incorporate these excited states lie flat in three-
dimensional space, and these represent the accessible states of the
system. Thus, the actual structure above Ty reflects both the ideal
configurations and those excited states with relatively low excess
free energy compared to kT,. Below Ty, We expect a freezing in of the

structure, the excited configurations being given by Eq. (1).

6. ELECTRONIC STRUCIURE

Derivation of the electronic structure for the case of disordered
systems follows the same logic as for periodic crystals.3 First, the
many-body Hamiltonian is used to write down the Schrodinger Equation
for the ion cores and the outer electrons. As a first approximation,
only the electrostatic interactions among these charged particles need
be considered. Below TS' the high viscosity enable us to postulate
that the ion cores possess an equilibrium structure, which is frozen
in at Tg‘ If we now adopt the adiabatic approximatiomn, a first-order
expansion in the small parameter (m/Ma)l/‘, where m is the electronic
mass and M the masses of the constituent ion cores, we can separate
the problem into three parts: (1) structure, or the equilibrium

positions of the ion cores; (2) phonons, or the normal modes of

vibrations of the ion cores around their equilibrium positions; (3)

electronic structure, or the states available to the outer electroms

as they move in the field of the iom cores at equlibrium. The
adiabatic approximation neglects electron—phonon interactions, which

allow for specific shifts of the equilibrium structure in response to



