Volcanoes

IN HISTORY, IN THEORY, IN ERUPTION

by Fred M. Bullard

TO BESS

- For encouragement and never-failing enthusiasm for the project,
- For help on the research and in the preparation of the manuscript, and
- For companionship on trips to volcanoes in many parts of the world where living conditions often were difficult.

ACKNOWLEDGMENTS

The material on which this book is based was assembled from studies carried on in volcanic regions in many parts of the world for more than a decade. For the opportunity to visit the various volcanic regions, for time from my regular duties to make the investigations and to do the research necessary to assemble this material, I am indebted to many organizations, foundations, and individuals. Space does not permit a complete listing but I would like to acknowledge to the following my appreciation for material aid in various phases of the work: The Geological Society of America and the Instituto de Geología of the Universidad Nacional de Mexico for aid in the study of Parícutin Volcano; the University of Texas Research Institute and the Geology Foundation of the University of Texas for research time, travel funds, and aid in the preparation of the manuscript; the U.S. State Department for two Fulbright grants which enabled me to study the volcanoes of Italy and Peru; the United Fruit Company for assistance in the work in Central America; the Compañía Minera de Guatemala (through Mr. Alan Probert, Manager) for aid in the work in Guatemala; the Instituto Tropical de Investigaciones Científicas of the X VOLCANOES

Universidad de El Salvador, and the Servicio Geológico Nacional de El Salvador for assistance in the work in El Salvador; Mr. Donald Spencer and associates of the Compañía Minera La India for help in the work in Nicaragua; and the Instituto Geográfico de Costa Rica for aid in Costa Rica. The Pan American Institute of Geography and History and the Inter-American Geodetic Survey also assisted in the work in all of the Central American countries.

I am particularly indebted to Professor Arthur Holmes, University of Edinburgh, Edinburgh, Scotland, who read the galleys and offered many constructive suggestions and helpful criticisms.

To my many friends in each of the countries where I have worked, who contributed generously of their time and provided transportation, guides, and other services, I wish to express my deep appreciation; unfortunately the list is too long to print.

All of the photographs not otherwise credited are my own. Those obtained from other sources are acknowledged in each case and I want to express my thanks to the individuals who have made such contributions.

I have drawn freely on published material both in the preparation of the text and for illustrations. In each case, however, the source is acknowledged and I wish to express my thanks for the use of this material. I am particularly grateful to the authors and publishers who have granted me permission to reproduce illustrations and to quote directly from their publications.

I wish, also, to express my thanks to the staff of the University of Texas Press for their exceptional cooperation in all aspects of the production of this book.

Finally, I wish to thank my wife, Bess Mills Bullard, for aid in every phase of the work from the preparation of the manuscript to the reading of the proof.

UNIVERSITY OF TEXAS PRESS Austin 12

THOMAS NELSON AND SONS LTD
Parkside Works Edinburgh 9
36 Park Street London W1
312 Flinders Street Melbourne C1

302-304 Barclays Bank Buildings Commissioner and Kruis Streets Johannesburg

Thomas Nelson and Sons (Canada) Ltd 91-93 Wellington Street West Toronto 1

Société Française d'Éditions Nelson 97 rue Monge Paris 5

Library of Congress Catalog Card No. 61-10043 Copyright © 1962 by Fred M. Bullard All rights reserved

Second Printing, 1962

Manufactured in the United States of America by the University of Texas Printing Division

CONTENTS

	Prologue	•	3
PART ON	e: Facts and Fiction about Volcanoes		
1.	What Is a Volcano?		7
2.	Mythology and Early Speculation on Volcanoes		10
3.	Volcanology Becomes a Science		15
4.	Classification of Volcanoes		31
. 5.	What Comes Out of a Volcano		37
6.	Cones, Craters, and Calderas		70
PART TW	o: Types of Volcanic Eruptions		
7.	The Peléan Type of Volcanic Eruption .		95
8.	The Vulcanian Type of Volcanic Eruption .		128
9.	The Strombolian Type of Volcanic Eruption		191
10.	The Hawaiian Type of Volcanic Eruption .		207
11.	The Icelandic Type of Volcanic Eruption .	•	243
PART THI	REE: Theory, Cycles, and Utilization of Volcanoes		
12.	Volcanic Cycles	,	257
13.	Birth of New Volcanoes		271
14.	Man's Use of Geothermal Energy	*	323
15.	Volcanoes in Geologic Perspective	•	366
	Retrospect		404
	Appendix: Geologic Time Scale		407
	Glossary		409
	Bibliography		415
	Index		425

LIST OF PLATES

	Parícutin Volcano, July, 1945	Front	tispiece
1.	Dr. Thomas A. Jaggar		29
2.	Pumice Layers in Road Cut near Antigua, Guatemala		46
3.	Crater Lake Caldera, Oregon	*	74
4.	Caldera of Coseguina Volcano, Nicaragua		89
5.	Ruins of St. Pierre after Its Destruction by a Nuée Ard	ente	
	on May 8, 1902		111
6.	Nuée Ardente Eruption at Mount Pelée, December	16,	
	1902		115
7.	Lake Avernus, Phlegraean Fields, Italy		132
8.	Excavations in Progress at Pompeii, Italy, in 1952 .		145
9.	Excavations at Herculaneum		151
10.	Lava Flows of Mount Vesuvius fa	cing	160
11.	Mount Vesuvius and the Bay of Naples		165
12.	Mount Vesuvius and the Harbor of Naples		167
13.	Vulcano from Quattr'ochi on Lipari Island		177
14.	Obsidian Flow from Crater of Campo Bianco, Lipari Is	land	179
15.	Crater of Vulcano with Island of Lipari in the Distance	e.	187
16.	Stromboli Volcano		193
17.	Stromboli and Sciarra del Fuoco		195
18.	Mauna Loa (Shield Volcano) in Profile with Kilauea	Cal-	
	dera in Foreground	•	217
19.	Summit Caldera (Mokuaweoweo) of Mauna Loa		218
20.	Detail of the Floor of Mokuaweoweo		219
21.	Map of the Island of Hawaii Showing the Principal	Vol-	
	canic Mountains and the General Pattern of Lava F	lows	220
22.	The 1940 Eruption (Curtain of Fire) within the Calde	ra of	
	Mauna Loa		221
23.	The 1940 Eruption of Mauna Loa from Hawaiian Vol-	cano	
	Observatory, Twenty-five Miles Away		222
24.	Mount Etna, Sicily, from Taormina		262
25.	The 1805 Eruption of Mount Vesuvius		269
26.	Parícutin Volcano, Michoacán, Mexico		277
27.	Parícutin Volcano, October 9, 1944		279

xiv Volcanoes

28.	Towers of the Church above the Lava Flow from Paricutin	
	Volcano, June, 1944	280
29.	Boca of Parícutin Lava Flow of September, 1944	281
30.	Close View of Boca Shown in Plate 29	283
31.	Volcán Jorullo, Mexico	295
32.	Eruption of Myozin-syo Volcano	320
33.	Larderello Steam Area, Italy	333
34.	Condensing Towers of Chemical Plant at Larderello, Italy	334
35.	Steam Well at Hveragerdi, Iceland	355
36.	Natural Steam Development at The Geysers, Sonoma	
	County, California, 1960	361
37.	Geothermal Power Plant at The Geysers, Sonoma County,	
	California	363
Her	T OF FIGURES	
LIS	T OF FIGURES	
1.	Types of Volcanic Bombs	45
2.	Diagrams Illustrating the Origin of "Shards" by the Explo-	
	sive Disruption of Pumice	47
3.	Andesite Line in Western Pacific Area	61
4.	Stages in the Development of a Caldera	73
5.	Restoration of Mount Mazama, Ancestral Cone of Crater	
	Lake	77
6.	The Caldera of Krakatoa	79
7.	Stages in the History of Krakatoa	81
8.	Limits of the Volcanic Ash and the Noise of the Explosions	
	in the 1883 Eruption of Krakatoa	82
9.	Active Volcanoes of Costa Rica and Nicaragua	86
10.	The Lesser Antilles, West Indies	98
11.	Island of Martinique, Lesser Antilles	101
12.	Devastated Areas in the May 8 and the August 30, 1902,	10.00.00
	Eruptions of Mount Pelée	.112
13.	Lava Dome in the Crater of Mount Pelée, April 30, 1934	119
14.	Spine of Mount Pelée with Ruins of St. Pierre	121
15.	Spine of Mount Pelée on March 15, 1903	122
16.	Area Devastated (shaded) by Eruption of May 7, 1902,	
	on Island of St. Vincent	124

17.	Bay of Naples and Surrounding Area	131
18A.	Vesuvius Prior to the Eruption of A.D. 79	
18B.	Vesuvius Today	136
19.	Profiles of the Crater of Vesuvius since the 1906 Eruption	166
20.	Structure Section of the Bay of Naples	169
21.	Depth of Magma Chamber at Vesuvius	171
22.	Map Showing Location of Larderello Steam Area, Italian	
	Volcanoes, and Major Structural Trends	172
23.	Aeolian Islands	174
24.	Lipari and Vulcano, Aeolian Islands	176
25.	Sequence of Eruptions at Vulcano	186
26.	Relative Sizes of Vesuvius, Stromboli, and Etna	192
27.	Crater of Stromboli on June 21, 1952	197
28.	Hawaiian Archipelago	208
29.	Stages in the Development of Oahu Island, Hawaii	210
30.	Map of Hawaii, Including the Submerged Area	212
31.	Stages in the History of a Volcanic Island in the Central	
	Pacific	216
32.	The 1949 Summit Eruption of Mauna Loa	224
33.	Map of a Portion of the Southwest Rift of Mauna Loa	
	Showing the 1949 and the 1950 Lava Flows	227
34.	Map of Kilauea Caldera (Crater) Area	230
35.	Diagrammatic Illustration of the Significance of Tilt .	233
36.	Map of the Southeastern Part of the Island of Hawaii,	
	Showing the Lava Flows of the 1955 and the 1960	
	Eruptions of Kilauea	238
37.	Columbia River and Snake River Lava Plateaus	244
38.	Icelandic Type of Eruption	245
39.	Iceland and the Mid-Atlantic Ridge	246
40.	Map of Iceland Showing Glaciers and Major Volcanic	
	Features	248
41.	Map of Mount Etna Showing Principal Lava Flows and	
	Parasitic Cones	263
42.	Eruptive Cycle of Mount Vesuvius	266
43.	Map Showing Location of Parícutin and Jorullo Volcanoes	274
44.	Lava Flow of Paricutin Volcano during First Two Years	285

xvi Volcanoes

45.	Lava Fields of Parícutin Volcano at the End of the	
	Eruption	287
46.	Sketch Map of Volcán Jorullo and Subsidiary Cones .	293
47.	Section of Volcán Jorullo and Malpais	300
48.	The Azores	311
49.	Fayal Island, Azores	312
50.	Aleutian Islands, Alaska	315
51.	Successive Events in the History of Bogoslof Island	317
52.	Map Showing Location of Myozin-syo Volcano	321
53.	Map Showing Relation of Volcanic Areas to Larderello	331
54.	Soffioni Areas in the Vicinity of Larderello	332
55.	Map of North Island, New Zealand	341
56.	Structural Trends in the New Zealand Region	343
57.	Cross Section at Wairakei Based on Exploratory Drill	
	Holes	345
58.	Major Structural Features of North Island, New Zealand	346
59.	Map of The Geysers Area, Sonoma County, California .	359
60.	Active Volcanoes of the World facing	368
61.	Spacing of the Volcanoes in the Galapagos Islands	373
62.	Section of the Earth Showing the Various Zones	378
63.	Section of Continental Area and Ocean Basin Showing	
	Relationship of Sial and Sima	380
64.	Distribution of Alpine-Cascade and Circum-Pacific Oro-	
	genic Belts	383
65.	Polar Projection Showing Ring of Mountain Chains (Oro-	
	genic Belts) Bordering the Pacific Ocean	385
66.	A Simplified System of Convection Currents	388
67.	Possible Correlation between the Stages of an Orogenic	
	Cycle and Those of a Hypothetical Convection-Current	
	Cycle	389
68.	Diagrammatic Illustration of How Convection Currents	
	Build Mountains	390
69.	Diagram of a Simple (single) Island Arc	394
70.	Map of Indonesia Showing Gravity Anomalies	397
71	Cravity Profile of Cuam Island and Nora Doop	200

Volcanoes: IN HISTORY, IN THEORY, IN ERUPTION

试读结束: 需要全本请在线购买: www.ertongbook.com

PROLOGUE

Volcanoes are unquestionably one of the most spectacular and awe-inspiring features of the physical world, and they have contributed to man some of his most exquisite pleasure and some of his most devastating misfortune. The most lofty mountains on the face of the earth, affording majestic scenery enjoyed by millions, are volcanic cones. On the other hand, great volcanic eruptions in historic times have wrought death and destruction to many areas. In ancient times volcanoes were surrounded by mystery and superstition, and even today, notwithstanding the tremendous advances in all sciences, people still ask many unanswered questions about volcanoes. But it is highly probable that when man has learned more about them their terrific power may be harnessed for the benefit of mankind.


This book is an effort to summarize in nontechnical language our present knowledge of volcanoes. Some of the important volcanoes and volcanic regions of the earth are described as examples of the various types of volcanoes. Volcanoes are found in those regions of the earth where mountains are growing. But since they are but one manifestation of active mountain-building processes, it is understandable why the geologic setting must be presented in the description of a volcanic region.

My own interest in volcanoes began while I was a member of a United States Geological Survey expedition to Alaska in 1929. On this

4 VOLCANOES

trip I first saw an active volcano and I was tremendously impressed. Only the year before I had received a Ph.D. degree in geology from the University of Michigan and had taken courses with Professor W. H. Hobbs, a distinguished scholar in the field of volcanoes, earthquakes, and mountain building. Nevertheless, when I actually saw the active volcano I realized that I knew very little about it, notwithstanding my college degrees and the fact that I had been teaching geology in a major university for several years. Voicing my thoughts to Dr. S. R. Capps, director of our party, he remarked that if I was really interested in volcanoes I should go to Hawaii and work with Dr. Thomas A. Jaggar, director of the Hawaiian Volcano Observatory and a world-famous authority on volcanoes. He further stated that he thought such a program could be arranged. It was arranged. But a severe economic depression (during the mid-thirties) intervened before I was able to go to Hawaii as an assistant to Dr. Jaggar.

Here I learned the technique of modern volcanic research and acquired some of Dr. Jaggar's enthusiasm for research on volcanoes. Back in Texas in the early forties I saw little opportunity to apply my newly acquired knowledge, except insofar as it was useful in teaching. However, on February 20, 1943, the situation suddenly changed. On that date a new volcano, Parícutin, was born in Mexico. By a fortunate combination of circumstances I was scheduled to teach a course on the volcanoes of Mexico in the 1943 summer school of the National University of Mexico. Naturally, I lost no time in visiting Parícutin and adopting it as a laboratory for my classes. Circumstances also worked out so that I spent a part of each year for the next seven years at Paricutin and was thus able to follow from personal observations almost its entire life history. Another milestone in my quest for knowledge of volcanoes was the opportunity to spend a year as a Fulbright scholar studying the classic volcanoes of the Mediterranean area. With headquarters at the University of Naples and the Vesuvian Volcano Observat ry, I studied Vesuvius, Etna, Stromboli, and other volcanoes in Italy, where the science of volcanology actually developed. Later an opportunity to investigate the active volcanoes of Central and South America arose, and that work, which has been under way for several years, is still in progress.

By turns hot embers from her entrails fly, And flakes of mountain flame that arch the sky. VIRGIL'S Aeneid

I. WHAT IS A VOLCANO?

"What is a Volcano?" is a familiar question. An oft-given answer is that "a volcano is a burning mountain from the top of which issue smoke and fire." Such a statement, although it does express the popular idea of a volcano, held even today, contains few elements of truth. In the first place, no "burning" in the sense of combustion, such as the burning of wood, occurs in a volcano; moreover, volcanoes are not necessarily mountains; furthermore, the activity takes place not always at the summit but more commonly on the sides or flanks; and finally the "smoke" is not smoke but condensed steam, mixed, frequently, with dust par-