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Preface

In modern engineering problem, the dynamie design of structures becomes more
and more imnportani. It is well known that in order to achieve an optimal design,
we have to modify the structural paramcters and resolve the weneralized eigenvalue
problem repeatedly. 'The iterative vibration analysis may be very tedious job for
large and complex structures. Thercfore it is necessary to seck a fast computation
method for sensitivity analysis and reanalysis. The matrix perturbation nethod is
an extremely useful tool for seusitivity anslysis and reanalysis.

The matrix perlurbation theory is devoted to the discussion how the natural (re-
quencics and modal vectors change if small changes are imposed on the parameters of
structures.fn engineering problem, we shall encounver many small changos of the strue-
tural parameters, such as small structural modification,manufacture errors,iterative
design of structural parameters, design scusitivity analysis, random eigenvalue anal-
ysis and robustness analysis of control system, cte. In developing this bock, it is
assumed thai the reader has a university graduate level in mathematics, vibration
theory and finite clement method.

The contents of the book in general are as follows:

"The first. chapter is preliminaries to magrix perturbation theory and presents the
hasic conclusions of vibration theory and finite elemenl method.

Chapter 2 contains the perturbation theory of the distinet eigenvalue. The meth-
ods for improving the first order perturbation of the modal vectors, such as high
aceurate nwodal superposition method, cigenvector derivatives of the free-free struc-
Lures and elc., are discussed,

In Chapter 3, syslems with ropeated frequencies are considered. The matrix per-
turbation theory of vibration modes of such systems is devcloped, and the methods
for compuling the first ovder perturbation of the modal vectors are also presented.

Chapter 4 contains the theory of matrix perturbation of structures with close
frequencies, the spectral decomposition of the stiffness and mass matrixes, and the
derivatives of modes of close frequencies.

Chapter 5 presents the matrix perturbation theory of the complex modes of sys-
terns with real unsymrmetrical matrices, and the discussion is limited to the nonde-
foctive systems. The contents include the matrix perturbation methods for distinet,
multiple and close eigenvalues,

In Chapter &, the defective systems are considered. 'The matrix perturbation
theory for defective system is developed. The generalized modal theory and the
method for computing generalized modal vectors are covered.

In Chapter 7, the matrix perturbation theory for near defective systems and a
shift perturbation method for close cigenvalues are discussed.

Chapter 8 presents the random cigenvalue analysis of structures with random pa-
rametors, The contents include random finite element method, random perturbation
for random eigenvalue analysis and statistical propertics of random eigensolutions.

Chapter Y presents the matrix perturbation theory for interval eigenproblems. The
contents inclide an introduction to the interval mathematics. Deif’s method for inter-



val cigenvalue analysis, the generalization of Deif’s method, the matrix perturbation
bhased on Deif’s method and interval perturbation method.

This book is recommended to graduates, engincers and scientists of mechanical,
civil, acrospace, ocean, and vchicle engineering,

The author would like to express his gratitude to the National Natural Science
Foundation of China and 985" Engineering of Jilin University for supporting during
the author’s research work, Thanks are also due to the author’s graduate students of
Department of Mechanices, Jilin University, for their assistance with the preparation
ol the compuler routines and numerical examples.

Professor Chen Suhuan
Department of Mechanics

Jilin University

The People’s Republic of China
May 2006
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Chapter 1

Finite Element Method for
Vibration Analysis of
Structures |

1.1 Introduction

Beforc presenting the matrix perturbation theory in this book, we will discuss some
important basic considerations for the finite element method and the eigenproblem
in structural vibration analysis in this chapter. Because in various sections of the
following chapters, we will use the finite element method, and encounter vibration
eigenproblem and the statement of their solutions. We shall nat at that time discuss
how to obtain the required eigenvalues and eigenvectors,

The finite element method is very important to obtain approximate selutions to
problems in structura! vibration analysis. After application the finite clement method
to the structure, a discrete analysis model to idealize the continnum can be obtained.
The approximation achieved was shown to depend on the characteristics and the
number of elements used. As we know that the finite element method is a form of
Ritz analysis, so that the Ritz solutions are also applicable to finite element solutions.

In the following sections we present the finite element formulation of continuum
mechanics problems and the finite element solutions as a Ritz analysis, such as finite
element cquations of structural vibration, matrices of element characteristics, vibra-
tion eigenproblem, statements of eigensolutions (natural frequencies and mode shape),
Ritz analysis for eigenproblems, response analysis including modal superposition and
dircet integration methods, ofc.



1.2 The Hamilton Variational Principle for Discrete
Systems!¥

Considering the bending vibration of a beam in the & — z plane, which is assumed to
be a plane of symmetry for any eross scction, the foree vibration equation is

Puw 0 5w

where w(z, ) is subject to vhe boundary conditions

a Fw

W= D — E —_ ] =

. o s ElEE =0
, o {L.2)
dur 0 or EId W 0
Jr Sx2

and initial conditions. In Eq.(1.1), w(x,)is the transverse displacement, FI the
flexural rigidity, A the cross section area, p the mass density of the material, f(x,#)
the excitation force per unit length of the beam.

The vibration problem expressed by Eqs.(1.1) and (1.2) can be also expressed by
the Hamilton variational principle as follows

vty +F
sl (T-vydt+ | eWwat=0 (1.3)
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where T is Lhe kinetic energy, V the potential energy, 8W the virtual work of the
external forees. (L can be proved that the vibration problem expressed by Eqs.{1.1)
and (1.2) is cquivalent. to that expressed by the variational equation (1.3).

For the complex structures in engineering, the method to form the vibration equa-
tion is the finite element method which can be understood as a specific form of the
Ritz analysis. Thercfore, it is necessary 1o give the Hamilton variational principle for
the discrete systems based on the variational equation (1.3).

Let us now consider a system with n degrees of frecdom, the gencralized coor-
dinates are ¢1.g2.-- - .4¢n, the kinctic energy of the system can be expressed by the

generalized velocitics 1. ¢z, -+ ,gn as follows
1 I ™ ]_
T=-= mijaid; = —q Mg
2 ; ?Z::] T2 (1.4)

=T{g1. G2, \fjn)
where M is the mass matrix. The potential energy of the system can be expressed
by the gencralized coordinates as follows

L L

1 1 .
V= kijqio; = 59 Kda
922 T2 (15)

:1!(013@'29 e 1'}71)
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where K is the stiffness matris. The wvirtual work of the external forces can be
expressed by
L

W=>" Oida (1.6)

i=1
Substituting from Egs.(1.4) to (1.6) into Eq.(1.3), We have

/ Z Z gl dg: + E Q:0g;)dt = (1.7)

i=1
where ,
}T I o T (9T
f Z‘_amdr Z 5q3 / i 5, Saudt

T

t2
(}T
dt
\[LL i=1 dtd q

Substituting Eq.(1.8) into Eq.(1.7}, one gets

o, ddT BV
Lo e g+ @t =0 (19)

=

Because the generalized coordinate variation dg; is independent and arbitrary in
Eq.{1.9), we have

- =G, i=12,--.n 1.10
595 T 7 =, s 2y (1.10)
This is the Lagrange equation, i.c., the Lagrange equation is equivalent to the Hamil-
ton variational principle for the discrete svstem. Substituting Eqs.(1.4)} and (1.5}
into Eq.(1.10), the vibration equation in matrix form for the discrete systems can be
obtained

Ma+Kq=Q (1.11}

1.3 Finite Element Method for Structural Vibra-
tion Analysis!'?!

The main idea of the finite element method is that the complex structure is reduced
into an assembly of the discrete clements in which the displacements can be expressed
properly by the discrete displacements; the kinetic and the potential encrgy of the ele-
ment and the assembled structure can be computed; and then the vibration equations
can be derived by the Lagrange equation.

As we know that the assumed displacement functions nmst be continuous and
should preferably satisfy compatibility of deflections and slope on the boundaries.

In the Ritz analysis the displacements in the element can be expressed as the
following series form

{ulz,y,z.6)} = Z it = By (1.12)
i=1



where @ are the function matrix which in general, consist of polynomial terms, 7 the
Ritz coordinates to be determined. In the finite elemnent method the node displace-
ments of the clement should be used as the Ritz coordinates. In order to replace the
Ritz coordinates i by the node displacements of the element, from Eq.(1.12) we have

-u® = Ang (1.13)

whore the clements of matrix A are the functions of the element node coordinates.
Because the number of elements of 7 and u® is identical, A~ exists, from Eq.{1.13)
we have

n=A"ly* (1.14)
Substituting Eq.(1.14) into Eq.(1.12), onc gets
u(z,y, z,t) = PA" 'u® = Nu® {1.15)
where
N=®A"" {1.16)

N is the displacement shape function matrix.
The strain variable € is expressed as a function of the nodal displacement variables

¢ = Alu(w,y,z,t)} = ANu® = Bu*® {1.17)
where A is the gradient operator matrix, and
B = AN (1.18)

where B is the strain matrix of the element.
The stress vector of the element is

7 = Dc = DBu® = Su® {1.19)

where D is the elasticity constant matrix, S the stress matrix.
The clemeni. potential energy is

V= ‘E ] cTodv
2 /.

_ % f (u*)TBTDBu dv

v (1.20)
= i(uH)T(f BTDBdv)u®

(ue)TKeuc

[ B o

where
K* =/BTDBdn (1.21}
FH

K¢ is the clement stiffness matrix.



The velocity vector in the element is

Wiz, y, z,t) = Ni® (1.22)

and the element kinetic cnergy is
e 1 L
T == f ph ndv
2 Jy

= % f o) INTNGede
v

1.23

Loooor T - e ( )
= (") (| pN"Ndusu

2 v

1 ey T o
= -j(u Y mfa

m® = / pNTNdy (1.24)

v

m*® is the consistent mass matrix. .
The equivalent. nodal force vector RF of the body forces g* applied to the structure
call be obtained by the virtual work of R® equalling to that of g%, ie.

su® R® = / (5u) q*dv
= f s(u*) TN g*dv (1.25}
— ou)( | Nqrd)
So we have the equivalent nodal foree vector
Rf = /NTq‘gdt! (1.26)
v
The viscous damping force of the clement can be expressed as

q = —va = —/Nu° (1.27)

Substituting Fq.{1.27) into Eq.(1.26}, the equivalent nodal foree vector of the viscous
damping force can be expressed as

RS = — / ANTNu“ dv

1
_ / +NTNdw)i (1.28)
v
— _Cc.l:lti
where
C* = f ~N"Ndv (1.29)
v

5



C* is the viscous damping matrix of the element,

From Eqs.(1.24) to (1.29) it can be seen that the viscous damping matrix C¢ is
in proportion to the consistent mass matrix m®. The difference between C° and m®
is only & proportionality constant .

Assume that the transformation matrix L related to the local and global co-
ordinates systems, {z,y,z} and (a:’,y’,z’), which is an orthogonal matrix, that is
L1 =L". This leads to following relationships(Fig.1.1)

u® = L{u®)’ (1.30)
R® = L(R%)’ (1.31)
Substituting Fq.(1.30) into Egs.(1.20) and (1.23), we have
(K9 =LTK"L (1.32)
(M*)" = L"M°L (1.33)
Using Eqs.(1.30}, (1.31) and {1.29)}, we have
(C°) =L'C°L (1.34)
and
(R*) = LTR® (1.35)

z' A

Fig. 1.1

For ihe sake of simplicity in the following discussion, K¢, m®, C%, R® and u® still
represcent the corresponding variables in the global coordinate system.
The total potential energy of the structure is

V = Z V= %Z(UC}TKcuc
€ e
1 . . ‘
=5’ ZK u (1.36)

1
= "jUTKU



where u is the displacement vector, K is the s{iffness matrix of the structure,
K=Y K° (1.37)
-4
The total kinetic energy of the structure i
Z TS = 1 Z(ﬁe)Tmuﬁe
3 2 @
1. T [
= 5u (ZP:m i {1.38)

-I.v

| R S

=0 Mu

2

where M is the mass matrix of the structure,

M= m (1.39)

&

The total virtual work of the external forces and the damping forces is
W =3 awe =3 su) (R + R)

=’ > (R +RS)

(1.40)
=5u"()_R°+) R}
=du"(R + Ry)
Using Fa.{1.28), we obtain
Ry Y Ry -y cow
' (1.41)

L &
=-(>_C9u=-Cu
where C is the damping matrix of the structure
c=5 ¢ (1.42)
£
Hence, Eq.{1.40) becomnes

W =6u'R (1.43)

where . )
R=R+R;=R-Ca {1.44}

Suhstituting Eqs.(1.36), {1.38) and (1.44) iuto the Lagrange equation we have

Mi+Ku=R =R - Cu



