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Preface

This volume, and the companion work Srochastic Geometry, have been
compiled by the friends of Rollo Davidson and by one or two others who
had not met him but who hoped to become his friends. The two books
are very closely linked, and those who wish to explore either one in depth
will almost certainly need to consult the other. The degree of unity within
each single book is, however, much greater than that which could have
been attained by bringing them together, and we believe that most people
will find the two-volume arrangement a great convenience.

We have taken some pains to try to avoid the ‘miscellaneous’ character
often to be found in such cooperative works; both books contain much
that is new, even to the specialist, but we believe that each will be found
valuable as an introduction to the field named in its title, especially by
those interested in the possibility of undertaking research in either area
and daunted by the scattered nature of the periodical literature and the
absence of any comparable synthesis of it.

Each book is furnished with an introductory chapter surveying the field,
and setting the stage for the specialist articles which follow it.

This volume contains a very large part of the periodical literature on the
theory of Delphic semigroups, and is in fact the first book in any language
dealing with that subject. It also presents a large number of new results
in the theory of Kingman’s p-functions which characterize regenerative
phenomena, and thus it complements his recent monograph Regenerative
Phenomena (John Wiley & Sons, London, 1972). Other papers presented
here for the first time discuss various special classes of stochastic processes,
and a number of surveys are also included, dealing for example with the
sample-path properties of additive processes, and with Doob’s ‘theory of
versions’.

We are especially grateful for the trouble which has been taken by
Mr D. S. Griffeath, Professor J. F. C. Kingman, and Professor G. E. H.
Reuter in preparing for publication one of Davidson’s most remarkable
unpublished manuscripts from a rough draft found among his papers.
We also wish to thank Dr G. K. Eagleson and Dr D. N. Shanbhag for

X



X Preface

their assistance with another Davidson manuscript, and Miss Mary
Brooks and Miss Madeleine Wuidart who drew the pictures and made the
index.

Chapters 2.1-2.5 were first published by Springer—Verlag; 2.6 by the
Cambridge Philosophical Society; and 2.7 by the Academy of Sciences,
Paris. To all these bodies we are most grateful for their kindness in making
possible the complete coverage attempted in this book.

D. G. K.
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1.1

An Introduction to Stochastic Analysis

D. G. KENDALL

(1) Stochastic analysis is the field of interest of the members of a
loosely knit body called the Stochastic Analysis Group, which was formed
in Oxford in December 1961 to promote interest in the analytical aspects
~ of probability theory among mathematicians and statisticians in the
United Kingdom. Very much has been achieved since then, and the
primary purpose of the Group may be said to have been attained, as
the flourishing state of the two magnificent journals (Journal of Applied
Probability, Advances in Applied Prcbability) published from Sheffield
University under the editorship of Professor Gani bear witnéss® ¢{Most of
the published work emanating from the Group has appeared in their pages,
or in those of the journal Zeitschrift fiir Wahrscheinlichkeitstheorie, which
was founded during the same period, and has been edited with such .
distinction by Professor Schmetterer.) There are, however, still some who
need an occasional reminder that the fashionable trees of statistics and
operational research draw some of their nourishment from mathematical
roots, as well as from the photosynthetic activities of practical consulta-
tion. In this review, intended primarily for mathematicians, we shall
therefore take the opportunity not only to say what stochastic analysts
do, and why what they do is useful, but also to give some indication of
the mathematical foundations of the subject, and of its links with other
branches of mathematics. :

(2) We shall begin by recalling that a real-valued random variable X is

a measurable mapping from a probability-space (Q2,.% pr) (2 any non-
vacuous set, F# a oc-algebra of subsets thereof and pr a non-negative
measure on & of total mass 1) into the real line R endowed with Borel
sets. When this random variable is considered in isolation from others,
what is important is not the mapping X itself but rather the probability
3



4 Introduction

measure Py defined on the Borel subsets B of the line by

) Px(B) = pr (X~ B).

This measure Py is called the ‘distribution’ of X, and it tells us the
probability with which the realized ‘value’ X(w) (we€2) will fall in the
generic Borel set B. Obviously many random variables, perhaps defined

over different probability-spaces, will have the same distribution, and we
can regard the probability-space
(R, #(R), Px)

(with the identity-mapping) as supplying a uniquely defined ‘canonical’
model for all of them. Here Q has been replaced by the real line R, #(R)
denotes the o-algebra of Borel sets in R and Py is the distribution just
defined. The identity-mapping of R into R is the random variable. For
some purposes an equally well-defined and minor adjustment of the
model is convenient, in which #(R) is replaced by the smallest o-algebra
F+(R) containing both all the Borel sets and also all subsets of Borel sets
having Px-measure zero. That there exists a unique consistent extension
. of Py from #(R) to Z*(R) is a familiar fact, and we shall often use this
and similar ‘completion’ procedures in the pages which follow. (The
passage from Borel sets to Lebesgue-measurable sets on the line is an
instance of the same technical device, and indeed a special case of the
procedyre described here if we replace R by the unit segment and Py by
Lebesgue measure.) Notice, however, that in the canonical model,

identity: R~ R,
while we can use either Z(R) or Z+(R) in the measurability condition on
the left-hand side, we must always use Z(R) on the right-hand side.

(3) When two random variables X and Y are of interest, defined over
the same probability-space, their two distributions Px and Py do not
suffice for their study save in the very exceptional case when X and Y are
‘independent’; the pair (X,Y) is a measurable mapping from the
probability-space into the plane R?, and we define the ‘joint distribution®
Pxy by
@ Py, y(B) = pr((X, Y)™' B)
for all planar Borel sets B. Here (and in the higher but finite-dimensional
analogues) it is obvious what the analogous canonical models (using the
o-algebra of Borel sets, or its completion) should be. Nor (as we shall see
in more detail below) is there any difficulty in extending these definitions
to random variables which take their values in an arbitrary second count-
able compact Hausdorff space Z, and the specific examples just mentioned
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can be included within such a generalization by an appropriate compacti-
fication of R, R?, ..., etc. The Alexandrov one-point compactification is
convenient save in the case of R, and here the two-point compactification
Ru{—o0,00} can be used instead, if desired, and has certain obvious
advantages. (There are also some special problems connected with Markov
processes where quite sophisticated compactifications may be appropriate.)
We indicate such compactifications by a bar; thus R will denote the
compactified real line.

(4) Now let us generalize these ideas to an indexed family X of com-
ponent random variables X,, where o ranges through some arbitrary
index-set A, called the ‘parameter-set’; each one of the random variables
takes its values in R, compactified to R, or more generally in any fixed
second countable compact Hausdorff space Z which is called the ‘state-
space’. Thus, if w in Q is fixed, then X(w) maps 4 into Z, while if « in
A is fixed, then X, maps Q into Z. In such a situation we speak of the
whole family X in association with the probability-space (Q, % pr) as a
‘stochastic process’. The terminology harks back to the days when the
parameter-set 4 was invariably the real line, the non-negative half-line,
the integers or the non-negative integers, and was thought of as the time-
axis; in those more special situations we can think of X (w) as specifying
the realized ‘state’ of a randomly developing system as ‘time’ « ‘proceeds’
through A, the identification of w in Q having fixed all the chance con-
tributions to this development. More generally, when w is free, we can
think of X as a generic element of the space Z4 consisting of all Z-valued
functions over 4; any one such function is called a ‘path’ or ‘trajectory’,
and for given w the particular function X(w) is called the ‘sample path’.
In fact there is no distinction now between a stochastic process and a
random function; the domain of the function can be arbitrary, and a very
wide range of choices is available for its range Z. A detail which will be
obvious, but which requires emphasis, is thai we do not have a stochastic
process X unless the component random variables X, are all defined over
the same probability-space. The first step will be to seck the proper
analogue to the formulae (1) and (2), and the instinctive solution, to
accept equation (1) as it stands with X = {X,: «€ A} and with B a Borel
set, turns out to be the wrong one (save for rather special parameter-sets 4).

Now the system of Borel sets on the compactified line B can usefully
be thought of as the smallest o-algebra containing the open intervals and
at least one compactification-point, or alternatively we can describe it as
the smallest o-algebra containing all the half-open intervals (x’, x"],
where x’ and x” are extended reul numbers and x'<x". It is entirely
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reasonable to use this o-algebra on R because
3) X< X<x"

typifies a practically possible observation on a real-valued random variable
X. If we follow up this idea we see that a typical practically possible
observation on a real-valued stochastic process X will take the form

)] x;j<Xa,$x;’ forj=1,2,...,n,

where n is any positive integer, the as are in 4, and the xs are extended
real numbers. If we ask what is the smallest o-algebra of subsets of R4
which contains all sets of the form (4), where now X, is thought of as the
ath coordinate of a generic point in that function-space, the answer is
the o-algebra &, of Baire sets. This is not the same thing as the o-algebra
2 of Borel sets, and to make this clear it will suffice to say that here (and
also more generally) the o-algebra of Borel sets is that which contains all
the compact sets, and is otherwise minimal, while the o-algebra of Baire
sets is that which contains all those compact sets which happen to be
expressible as countable intersections of open sets, and is otherwise minimal;
these definitions work for any compact Hausdorff space, and show that in
general 4 is bigger than %,. Of course R4 is compact Hausdorff, and so
we can use these definitions in our work. (A good general reference for
Baire and Borel sets is Halmos [29], but the reader should be prepared to
find his account considerably more complicated; this is due to the fact
that he does not confine his attention to the compact case.)

(5) It is obviously important to know when the Borel and Baire
o-algebras coincide, and there are just two facts concerning this matter
which we shall need to use here:

(/) If the space is not merely compact Hausdoff, but is in addition
second countable, then the two o-algebras will be identical. We shall assume
throughout that our component random variables range through state-
spaces Z of this sort, and so in the definition of such a random variable,
where we require the mapping

5 Xy Q>Z

to be measurable, we can use the Borel or Baire o-algebras indifferently
on the right-hand side, for they are the same.

(ii) If the space is merely compact Hausdorff, and not necessarily
second countable, then in general & can be properly bigger than %,. In
particular this can happen if we are talking about the space Z4; Z4 is a
Cartesian product of copies of the space Z, and so inherits both its compact
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and Hausdorff properties, but it will inherit its second countable character
if and only if the parameter-set 4 is countable. We can in fact be more
precise than this: in Z4 the systems of Borel and Baire sets coincide if and
only if A is countable. (A useful fact to bear in mind is that the singleton
sets in Z4 are always Borel sets, because they are compact, but they are
Baire sets if and only if A is countable.)

(6) Let us now apply (i) and (ii)-above to the most general situation
we shall want to consider; suppose:in fact that we have a probability-
space ({2, % pr) and that we have agsociated with it a family of component
mappings (for a € 4)

(6) X6 Q>Z,
which we can also think of as a combined mapping
@) X:Q->Z4

into the Cartesian-product space. In order to call X ={X,: a€4} a
stochastic process, we want each mapping (6) to be measurable (it being
understood that Q carries the o-algebra ). We have already remarked
at (¢) in the preceding section that we can use the Baire or Borel o-algebra
indifferently in Z, and so the question of what we mean by the random-
variable status of X, is not in question; we simply mean that X ;' Be %
whenever B is a Baire (= Borel) set in Z.

Now let us look at the mapping (7); the only kind of observation we
can imagine actually making on such a process would be of the form

®) X,€B; forj=12,..,n,

where # is a positive integer, the as are in 4 and the Bs are Baire (= Borel)
cets in Z. It is obvious, therefore, that we must require (8) to determine a
measurable subset of Z4 for every choice of n, the as and the Bs, and the
.smallest o-algebra which contains all these sets as members is the Baire
‘o-algebra B, on Z4. We can therefore call X, defined over (Q, % pr), a
stochastic process when and only when

X-1Bec% for every Baire set B in Z4.

There is another approach which has some interest and leads to the
same conclusion. Let @ denote any continuous real-valued function over
Z4. Then as a minimal desideratum for the stochastic process (7) we
might reasonably demand that the composed mapping

Do X: Q>R

should determine a real-valued random variable, and this immediately .
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suggests that we should use, as the o-algebra on Z4, the smallest one which
makes the mapping

) P: Z4->R

measurable for every continuous @ (R as usual carrying the Borel sets,
i.e. the sets in Z(R)). But this, once again, turns out to be the Baire
o-algebrz on Z4.

Q) So much being agreed, it will be seen that the correct analogue to
equations (1) and (2) will be as follows: the distribution (or, as I shall
prefer to call it, the name) of the stochastic process

(10) (Q,Fpr; Z,4; X)
is the probability measure Py defined by
aan Px(B) =pr(X'B)

on the Baire o-algebra %, for Z-4. Our terminology here is dictated by the
fact that, when Z and A have been given, the only property of the structure
(10) which is of the slightest practical importance is the measure Py on
%,. If two variants of the structure (10) have the same Z, the same A and
the same Py, then there is absolutely no reason for using one rather than
the other apart from questions of aesthetics or analytical expediency.
Thus, Z and A being fixed, Py characterizes an equivalence class of
structures (10) which there can be no practical reason to refine further.
If we write 1 = Py, then for practical purposes (Z, 4, ) defines the process,
and this is why (Z and A4 being normally fixed in any such discussion) we
call u the ‘name’ of the process. Any structure (10) having w as ifs name
will here be called a version of the process; the collection of all versions
with name p will be called the name-class of p.. The methodology of a good
deal of stochastic analysis consists in the shrewd choice of an appropriate
version for the particular analytical exercise one has in view. As a glance
at the literature will show, versions proliferate at an alarming rate, and
we shall make a serious atteupt here to ‘platonize’ the situation by
making precise what we mean by those versions, which we shall then call
models, which are canonical.

(8) Before proceeding to this matter, let us note one immediate corollary
to the discussion so far. We have observed that we are at liberty to con-
found the Borel and Baire sets in Z+4 if and only if 4 is countable, and the
resulting simplifications in the interaction between the measure theory
and the topology are so useful that there is an unavoidable methodological
gulf between countable-A problems and uncountable-4 problems. For
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example, this is why in the more classical parts of the theory ‘discrete-
time’ stochastic processes (with A ={0,1,2,...}) are so much more
easy to deal with than ‘continuous-time’ stochastic processes (with
A = {a: 0<a<oo}). It will be obvious that one would find it intolerable
to have to sacrifice continuous-time stochastic processes altogether, so
that the Baire-Borel contrast cannot in general be shirked.

It might perhaps be thought that a drastic simplification in the nature
of the state-space Z would have a healing effect on the breach, but this
is not so; the difficulties are fully present even in the apparently trivial
case when Z contains just two points.

(9) A large number of important questions now pose themselves almost
automatically. One, to which we shall return later, is of considerable
dificulty. Suppose that we want to talk about random functions having
some special property T'; for example we may have in mind the Bachelier—
Lévy—Wiener theory of Brownian motion, where Z = R and 4 = R, and
we may want to be able to speak of this random motion as a random
continuous motion. Expressed in the notation we are using here, this
means that we are dealing with a random path X which (for any fixed w)
is a point in Z4 = RE, and we want to be able to say, perhaps with
probability one, that X lies in the subset C(4) = C(R) of Z4 = RE, Many
of the ‘nice properties’ one would like a sample path to have are of this
character; they amount to a requirement of the form X(w)eI < Z4,
but often, as here, the portion I" of path-space to which we should like to
restrict ourselves is not a Baire set, and so immediately we are in trouble.
We shall see in due course how this difficulty can be turned, but for the
moment we record only the following very useful ‘rule-of-thumb’. If the
specification of the subset I' involves essential reference to uncountably
many values of the parameter «, then I' cannot possibly be a Baire set.
If, on the other hand, only countably many as are involved in the specifi-
cation of I', then I" may be a Baire set. This is perhaps also a good point
at which to mention that not all ‘nice properties’ can be thrown into the
form ‘X(w)eI”, and those which cannot be so expressed (e.g. process-
measurability) raise further difficulties of a dif.erent kind.

We now leave this matter for the moment, and turn to two other
problems which have, happily, been fully solved. We have chosen to
characterize a name-class of stochastic processes by a rather complicated
object: a probability measure u on the Baire sets of Z<. Can we simplify
this characterization, and can we do so in such a way that the new
formulation preserves both the unicity and existence properties? We want
to be sure that, when we have learned how to ‘spell’ the ‘name’ more
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simply, it still characterizes the name-class of processes uniguely, and also
that a name-class always exists for it to characterize.

(10) The simplification of the ‘name’ can be carried out in various ways,
and it would be undesirable to go into much detail on this matter here,
beyond saying that all amount to specifying in one way or another the
system of finite-dimensional distributions,

(12) Pr Xy, Xay.., Xoy ODFB(Z7™),

where n runs through the positive integers and the as through 4. (Note
that #(Z™) in the expression (12).is the same as %(Z™).) Clearly the
‘name’ determines each of the finite-dimensional distributions (which are
in fact just the ‘names’ of all the finite subprocesses). It is quite easy to
prove (by monotone-class or by Dynkin’s 7/A arguments—see [21] for the
latter) that if two stochastic processes determine the same finite-
dimensional distributions (12), then they must belong to the same name-
class, and conversely. So we are merely left with the question, which are
the systems of finite-dimensional distributions that can be associated with
name-classes of stochastic processes? This question of exiszence lies a lot
" deeper than that of unicity, but fortunately (with the topological assump-
tion on Z which we assume throughout) the answer is fully known, and is
agreeably simple. It was given by P. J. Daniell in 1918 [14, 15] and later,
but more definitively, by A. N. Kolmogorov in 1933 [52], and it can be
expressed thus: the finite-dimensional distributions correspond to a
name-class of stochastic processes when, and only when, they satisfy two
trivially obvious consistency conditions associated with (a) dropping one
of the as and (b) permuting the as, respectively. Though the theorem is
easy to state, it is not so easy to prove. The modern proof uses functional
analysis (Stone-Weierstrass plus Riesz) and is associated with the names
of Bourbaki and Nelson. (See Nelson [63] or Meyer [61].)
The Daniell-Kolmogorov theorem proves existence by constructing a
special member of the name-class which is deservedly called the canonical
model,

(13) (Z4, B (ZY),pn; Z,A4; X).

Here we have written out Z(Z4) in full, but in future we shall just call
this %, (and similarly for &, %, ett.). In (13) n denotes the ‘name’ of the
name-class of which the model (13) is to be the canonical representative,
and X denotes, here and henceforth, the family of ‘coordinate-mappings’
from Z4 into Z:

(14) (Vo: ZA>Z (x€A).



